如圖,已知△ABC中,A=90°,B=30°,點(diǎn)P在BC上運(yùn)動(dòng)且滿足
CP
=λ
CB
,當(dāng)
PA
PC
取到最小值時(shí),λ的值為( 。
A、
1
4
B、
1
5
C、
1
6
D、
1
8
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:平面向量及應(yīng)用
分析:如圖所示,建立直角坐標(biāo)系.不妨設(shè)BC=4,P(x,0),則A(3,
3
)
.(0≤x≤4).可得
PA
PC
=(x-
7
2
)2-
1
4
.利用二次函數(shù)的單調(diào)性可得當(dāng)x=
7
2
時(shí),
PA
PC
取到最小值.利用
CP
=λ
CB
,即可解出.
解答: 解:如圖所示,建立直角坐標(biāo)系.
不妨設(shè)BC=4,P(x,0),則A(3,
3
)
.(0≤x≤4).
PA
PC
=(3-x,
3
)
•(4-x,0)
=(3-x)(4-x)
=x2-7x+12
=(x-
7
2
)2-
1
4

當(dāng)x=
7
2
時(shí),
PA
PC
取到最小值-
1
4

CP
=λ
CB

(-
1
2
,0)
=λ(-4,0),
-4λ=-
1
2
,
解得λ=
1
8

故選:D.
點(diǎn)評:本題考查了數(shù)量積運(yùn)算性質(zhì)、二次函數(shù)的單調(diào)性,考查了推理能力與計(jì)算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)幾何體的三視圖如圖所示,則該幾何體的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
、
b
是夾角為60°的兩個(gè)單位向量,向量
a
b
(λ∈R)與向量
a
-2
b
垂直,則實(shí)數(shù)λ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)集A={a1,a2,a3,a4,a5}(0≤a1<a2<a3<a4<a5)具有性質(zhì)p:對任意i,j∈Z,其中1≤i≤j≤5,均有(aj-ai)∈A,若a5=60,則a3=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=5
3
cos2x+
3
sin2x-4sinxcosx
(1)求f(
12

(2)若f(α)=5
3
,α∈(
π
2
,π),求角α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三角形ABC中,AB=AC,BC=4,∠BAC=90°,
BE
=3
EC
,若P是BC邊上的動(dòng)點(diǎn),則
AP
AE
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)無窮數(shù)列{an},如果存在常數(shù)A,對于任意給定的正數(shù)?(無論多。,總存在正整數(shù)N,使得n>N時(shí),恒有|an-A|<?成立,就稱數(shù)列{an}的極限為A,則四個(gè)無窮數(shù)列:
①{(-1)n×2};
②{n};
③{1+
1
2
+
1
22
+
1
23
+…+
1
2n-1
};
④{
2n+1
n
},
其極限為2共有( 。
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某幾何體的三視圖如圖所示,其中正視圖是腰長為2的等腰三角形,俯視圖是半徑為
1的半圓,則其側(cè)視圖的面積是( 。
A、
1
2
B、
3
2
C、1
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(3x)=4xlog23,則f(1)+f(2)+f(22)+…+f(2n)的值等于
 

查看答案和解析>>

同步練習(xí)冊答案