y=(x+1)(x+2)(x+3)的導數(shù)

答案:
解析:

解法一:

  y′=[(x+1)(x+2)]′(x+3)+(x+1)(x+2)(x+3)′

    =[(x+1)′(x+2)+(x+1)(x+2)′](x+3)+(x+1)(x+2)

    =(x+2+x+1)(x+3)+(x+1)(x+2)

    =3x2+12x+11

  解法二:y=x3+6x2+11x+6

  ∴ y′=3x2+12x+11


練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2013•黃埔區(qū)一模)對于函數(shù)y=f(x)與常數(shù)a,b,若f(2x)=af(x)+b恒成立,則稱(a,b)為函數(shù)f(x)的一個“P數(shù)對”;若f(2x)≥af(x)+b恒成立,則稱(a,b)為函數(shù)f(x)的一個“類P數(shù)對”.設(shè)函數(shù)f(x)的定義域為R+,且f(1)=3.
(1)若(1,1)是f(x)的一個“P數(shù)對”,求f(2n)(n∈N*);
(2)若(-2,0)是f(x)的一個“P數(shù)對”,且當x∈[1,2)時f(x)=k-|2x-3|,求f(x)在區(qū)間[1,2n)(n∈N*)上的最大值與最小值;
(3)若f(x)是增函數(shù),且(2,-2)是f(x)的一個“類P數(shù)對”,試比較下列各組中兩個式子的大小,并說明理由.
①f(2-n)與2-n+2(n∈N*);
②f(x)與2x+2(x∈(0,1]).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=log2(x+1),當點 (x,y) 是函數(shù)y=f (x) 圖象上的點時,點(
x
3
,  
y
2
)
是函數(shù)y=g(x) 圖象上的點.
(1)寫出函數(shù)y=g (x) 的表達式;
(2)當g(x)-f (x)≥0時,求x的取值范圍;
(3)當x在 (2)所給范圍內(nèi)取值時,求g(x)-f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•順義區(qū)二模)對于定義域分別為M,N的函數(shù)y=f(x),y=g(x),規(guī)定:
函數(shù)h(x)=
f(x)•g(x),當x∈M且x∈N
f(x),當x∈M且x∉N
g(x),當x∉M且x∈N

(1)若函數(shù)f(x)=
1
x+1
,g(x)=x2+2x+2,x∈R
,求函數(shù)h(x)的取值集合;
(2)若f(x)=1,g(x)=x2+2x+2,設(shè)bn為曲線y=h(x)在點(an,h(an))處切線的斜率;而{an}是等差數(shù)列,公差為1(n∈N*),點P1為直線l:2x-y+2=0與x軸的交點,點Pn的坐標為(an,bn).求證:
1
|P1P2|2
+
1
|P1P3|2
+…+
1
|P1Pn|2
2
5
;
(3)若g(x)=f(x+α),其中α是常數(shù),且α∈[0,2π],請問,是否存在一個定義域為R的函數(shù)y=f(x)及一個α的值,使得h(x)=cosx,若存在請寫出一個f(x)的解析式及一個α的值,若不存在請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

班主任為了對本班學生的考試成績進行分析,決定從全班25名女同學,15名男同學中隨機抽取一個容量為8的樣本進行分析.
(I)如果按性別比例分層抽樣,男、女生各抽取多少名才符合抽樣要求?
(II)隨機抽出8名,他們的數(shù)學、物理分數(shù)對應(yīng)如下表:
學生編號 1 2 3 4 5 6 7 8
數(shù)學分數(shù)x 60 65 70 75 80 85 90 95
物理分數(shù)y 72 77 80 84 88 90 93 95
(i)若規(guī)定85分以上(包括85分)為優(yōu)秀,在該班隨機調(diào)查一名同學,他的數(shù)學和物理分數(shù)均為優(yōu)秀的概率是多少?
(ii)根據(jù)上表數(shù)據(jù),用變量y與x的相關(guān)系數(shù)或散點圖說明物理成績y與數(shù)學成績x之間線性相關(guān)關(guān)系的強弱.如果有較強的線性相關(guān)關(guān)系,求y與x的線性回歸方程(系數(shù)精確到0.01);如果不具有線性相關(guān)關(guān)系,說明理由.
參考公式:相關(guān)系數(shù)r=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)
2
n
i=1
(yi-
.
y
)
2
;
回歸直線的方程是:
?
y
=bx+a
,其中b=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)
2
,a=
.
y
-b
.
x
,
?
y
i
是與xi對應(yīng)的回歸估計值.
參考數(shù)據(jù):
.
x
=77.5,
.
y
=84.875
,
8
i=1
(xi-
.
x
)
2
≈1050
8
i=1
(yi-
.
y
)
2
≈457
,
8
i=1
(xi-
.
x
)(yi-
.
y
)≈688
1050
≈32.4
,
457
≈21.4
550
≈23.5

查看答案和解析>>

科目:高中數(shù)學 來源:2013年上海市黃浦區(qū)高考數(shù)學一模試卷(理科)(解析版) 題型:解答題

對于函數(shù)y=f(x)與常數(shù)a,b,若f(2x)=af(x)+b恒成立,則稱(a,b)為函數(shù)f(x)的一個“P數(shù)對”;若f(2x)≥af(x)+b恒成立,則稱(a,b)為函數(shù)f(x)的一個“類P數(shù)對”.設(shè)函數(shù)f(x)的定義域為R+,且f(1)=3.
(1)若(1,1)是f(x)的一個“P數(shù)對”,求f(2n)(n∈N*);
(2)若(-2,0)是f(x)的一個“P數(shù)對”,且當x∈[1,2)時f(x)=k-|2x-3|,求f(x)在區(qū)間[1,2n)(n∈N*)上的最大值與最小值;
(3)若f(x)是增函數(shù),且(2,-2)是f(x)的一個“類P數(shù)對”,試比較下列各組中兩個式子的大小,并說明理由.
①f(2-n)與2-n+2(n∈N*);
②f(x)與2x+2(x∈(0,1]).

查看答案和解析>>

同步練習冊答案