【題目】小明與另外2名同學(xué)進(jìn)行手心手背游戲,規(guī)則是:3人同時(shí)隨機(jī)等可能選擇手心或手背中的一種手勢(shì),規(guī)定相同手勢(shì)人數(shù)多者每人得1分,其余每人得0.現(xiàn)3人共進(jìn)行了4次游戲,記小明4次游戲得分之和為,則的期望為(

A.1B.2C.3D.4

【答案】C

【解析】

根據(jù)古典概型概率求法,列舉出現(xiàn)的所有可能.由離散型隨機(jī)變量的概率求法,可得小明得分的對(duì)應(yīng)的概率與分布列,即可求出得分之和的期望.

進(jìn)行手心手背游戲,3人出現(xiàn)的所有可能情況如下所示:

(,,), (,,),(,,),(,,)

(,,),(,,),(,,),(,,)

則小明得1分的概率為,0分的概率為

進(jìn)行4次游戲,小明得分共有5種情況:0,1,2,3,4

由獨(dú)立重復(fù)試驗(yàn)的概率計(jì)算公式可得:

則得分情況的分布列如下表所示:

0

1

2

3

4

P

的期望

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為,且滿(mǎn)足,,設(shè),則以下四個(gè)命題:(1是等差數(shù)列;(2中最大項(xiàng)是;(3通項(xiàng)公式是;(4.其中真命題的序號(hào)是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐中,底面是邊長(zhǎng)為2的菱形,的中點(diǎn).

1)證明:平面;

2)設(shè)是線段上的動(dòng)點(diǎn),當(dāng)點(diǎn)到平面距離最大時(shí),求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角梯形中,,,,的中點(diǎn),的交點(diǎn).將沿折起到的位置,如圖

)證明:平面;

)若平面平面,求平面與平面夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng),其中為常數(shù).

1)求的值;

2)當(dāng)時(shí), 恒成立,求實(shí)數(shù)的取值范圍;

3若關(guān)于的方程上有解,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四邊形的直角梯形,BC,,為線段的中點(diǎn),平面,,為線段上一點(diǎn)(不與端點(diǎn)重合).

1)若,

(。┣笞C:PC平面;

(ⅱ)求平面與平面所成的銳二面角的余弦值;

2)否存在實(shí)數(shù)滿(mǎn)足,使得直線與平面所成的角的正弦值為,若存在,確定的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線C的頂點(diǎn)在坐標(biāo)原點(diǎn),對(duì)稱(chēng)軸為x軸,拋物線C過(guò)點(diǎn)A(4,4),過(guò)拋物線C的焦點(diǎn)F作傾斜角等于45°的直線l,直線l交拋物線C于M、N兩點(diǎn).

(1)求拋物線C的方程;

(2)求線段MN的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2017年起,部分省、市陸續(xù)實(shí)施了新高考,某省采用了“”的選科模式,即:考試除必考的語(yǔ)、數(shù)、外三科外,再?gòu)奈锢、化學(xué)、生物、歷史、地理、政治六個(gè)學(xué)科中,任意選取三科參加高考,為了調(diào)查新高考中考生的選科情況,某地區(qū)調(diào)查小組進(jìn)行了一次調(diào)查,研究考生選擇化學(xué)與選擇物理是否有關(guān).已知在調(diào)查數(shù)據(jù)中,選物理的考生與不選物理的考生人數(shù)相同,其中選物理且選化學(xué)的人數(shù)占選物理人數(shù)的,在不選物理的考生中,選化學(xué)與不選化學(xué)的人數(shù)比為.

1)若在此次調(diào)查中,選物理未選化學(xué)的考生有100人,試完成下面的列聯(lián)表:

選化學(xué)

不選化學(xué)

合計(jì)(人數(shù))

選物理

不選物理

合計(jì)(人數(shù))

2)根據(jù)第(1)問(wèn)的數(shù)據(jù),能否有99%把握認(rèn)為選擇化學(xué)與選擇物理有關(guān)?

3)若研究得到在犯錯(cuò)誤概率不超過(guò)0.01的前提下,認(rèn)為選化學(xué)與選物理有關(guān),則選物理又選化學(xué)的人數(shù)至少有多少?(單位:千人;精確到0.001

附:.

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有一種游戲畫(huà)板,要求參與者用六種顏色給畫(huà)板涂色,這六種顏色分別為紅色、黃色1、黃色2、黃色3、金色1、金色2,其中黃色1、黃色2、黃色3是三種不同的顏色,金色1、金色2是兩種不同的顏色,要求紅色不在兩端,黃色1、黃色2、黃色3有且僅有兩種相鄰,則不同的涂色方案有(  )

A.120種B.240種C.144種D.288種

查看答案和解析>>

同步練習(xí)冊(cè)答案