已知的導(dǎo)函數(shù)的簡圖,它與軸的交點是(0,0)和(1,0),


(1)求的解析式及的極大值.
(2)若在區(qū)間(m>0)上恒有≤x成立,求m的取值范圍.
(1),1;(2)

試題分析:(1)由圖象和 與軸的交點是(0,0)和(1,0),可知f(x)在區(qū)間[0,1]上是增函數(shù),在區(qū)間(-∞,0),(1,+∞)上是減函數(shù),則有f'(0)=f'(1)=0,再由,即可求解;(2)首先將“f(x)≤x,x∈[0,m]成立”轉(zhuǎn)化為“x(2x-1)(x-1)≥0,x∈[0,m]成立”,即可求解.
(1),由已知
解得
,,有圖像可知極大值為            6分
(2)令,即
,
在區(qū)間上恒成立,         12分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù),
(1)當(dāng)時,求函數(shù)的單調(diào)遞減區(qū)間;
(2)若函數(shù)有相同的極大值,且函數(shù)在區(qū)間上的
最大值為,求實數(shù)的值.(其中e是自然對數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知x=-是函數(shù)f(x)=ln(x+1)-x+x2的一個極值點。
(1)求a的值;
(2)求曲線y=f(x)在點(1,f(1))處的切線方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)在一點的導(dǎo)數(shù)值為是函數(shù)在這點取極值的      條件。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)f(x)=mx2+lnx-2x在定義域內(nèi)是增函數(shù),則實數(shù)m的取值范圍為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)內(nèi)有極小值,則實數(shù)的取值范圍為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)上最大值和最小值分別是 (    )
A.5 , -15B.5,-4C.-4,-15D.5,-16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

處有極小值,則實數(shù)         .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)函數(shù),則(    )
A.最大值為B.最大值為
C.最小值為D.最小值為

查看答案和解析>>

同步練習(xí)冊答案