【題目】如圖,地面上有一豎直放置的圓形標(biāo)志物,圓心為C,與地面的接觸點(diǎn)為G.與圓形標(biāo)志物在同一平面內(nèi)的地面上點(diǎn)P處有一個(gè)觀測點(diǎn),且PG=50m.在觀測點(diǎn)正前方10m處(即PD=10m)有一個(gè)高為10m(即ED=10m)的廣告牌遮住了視線,因此在觀測點(diǎn)所能看到的圓形標(biāo)志的最大部分即為圖中從A到F的圓。
(1)若圓形標(biāo)志物半徑為25m,以PG所在直線為x軸,G為坐標(biāo)原點(diǎn),建立直角坐標(biāo)系,求圓C和直線PF的方程;
(2)若在點(diǎn)P處觀測該圓形標(biāo)志的最大視角(即∠APF)的正切值為 ,求該圓形標(biāo)志物的半徑.
【答案】
(1)解:圓C:x2+(y﹣25)2=252.
直線PB方程:x﹣y+50=0.
設(shè)直線PF方程:y=k(x+50)(k>0),
因?yàn)橹本PF與圓C相切,所以 ,解得
所以直線PF方程: ,即4x﹣3y+200=0
(2)解:設(shè)直線PF方程:y=k(x+50)(k>0),圓C:x2+(y﹣r)2=r2.
因?yàn)閠an∠APF=tan(∠GPF﹣∠GPA)= = ,所以
所以直線PF方程: ,即40x﹣9y+2000=0.
因?yàn)橹本PF與圓C相切,所以 ,
化簡得2r2+45r﹣5000=0,即(2r+125)(r﹣40)=0.
故r=40
【解析】(1)利用圓心與半徑,可得圓的方程,利用PF與圓C相切,可得直線PF的方程;(2)先求出直線PF方程,再利用直線PF與圓C相切,求出該圓形標(biāo)志物的半徑.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)Sn是數(shù)列{an}的前n項(xiàng)和. (Ⅰ)若2Sn=3n+3.求{an}的通項(xiàng)公式;
(Ⅱ)若a1=1,an+1﹣an=2n(n∈N*),求Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某房地產(chǎn)開發(fā)公司計(jì)劃在一樓區(qū)內(nèi)建造一個(gè)長方形公園ABCD,公園由長方形的休閑區(qū)A1B1C1D1(陰影部分)和環(huán)公園人行道組成.已知休閑區(qū)A1B1C1D1的面積為4000平方米,人行道的寬分別為4米和10米.
(1)若設(shè)休閑區(qū)的長A1B1=x米,求公園ABCD所占面積S關(guān)于x的函數(shù)S(x)的解析式;
(2)要使公園所占面積最小,休閑區(qū)A1B1C1D1的長和寬該如何設(shè)計(jì)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD的底面是正方形,PD⊥底面ABCD,點(diǎn)E在棱PB上.
(1)求證:平面AEC⊥平面PDB;
(2)當(dāng)PD=AB,且E為PB的中點(diǎn)時(shí),求AE與平面PDB所成的角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a<0,函數(shù)f(x)=acosx+ + ,其中x∈[﹣ , ].
(1)設(shè)t= + ,求t的取值范圍,并把f(x)表示為t的函數(shù)g(t);
(2)求函數(shù)f(x)的最大值(可以用a表示);
(3)若對(duì)區(qū)間[﹣ , ]內(nèi)的任意x1 , x2 , 總有|f(x1)﹣f(x2)|≤1,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)M=( ﹣1)( ﹣1)( ﹣1)滿足a+b+c=1(其中a>0,b>0,c>0),則M的取值范圍是( )
A.[0, )
B.[ ,1)
C.[1,8)
D.[8,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 =(2,1), =(1,7), =(5,1),設(shè)R是直線OP上的一點(diǎn),其中O是坐標(biāo)原點(diǎn).
(1)求使 取得最小值時(shí) 的坐標(biāo)的坐標(biāo);
(2)對(duì)于(1)中的點(diǎn)R,求 與 夾角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)().
(1)若在點(diǎn)處的切線與直線垂直,求實(shí)數(shù)的值;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)討論函數(shù)在區(qū)間上零點(diǎn)的個(gè)數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com