分析:把圓的參數方程化為普通方程,找出圓心坐標與半徑r,根據直線與圓至少有一個公共點,可知圓心到直線的距離d小于等于圓的半徑r,利用點到直線的距離公式表示出d,即可列出關于m的絕對值不等式,分m+3大于等于0和小于0兩種情況,分別根據絕對值的代數意義化簡,即可求出m的取值范圍.
解答:解:把圓的參數方程化為普通方程得:(x-1)
+y
=1,
所以圓心坐標為(1,0),半徑r=1,
∵已知直線與圓至少有一個公共點,
∴圓心到直線的距離d=
≤r=1,
化簡得:|m+3|≤5,
當m+3≥0,即m≥-3時,不等式化為:m+3≤5,解得m≤2,
不等式的解集為:[-3,2];
當m+3<0,即m<-3時,不等式化為:-m-3≤5,解得m≥-8,
不等式的解集為:[-8,-3),
綜上,實數m的取值范圍是:[-8,2].
故答案為:[-8,2]