分析 (1)由條件根據(jù)正弦函數(shù)的對稱性,求得函數(shù)y=$\frac{1}{2}$sin(2x+$\frac{π}{6}$)-1的對稱軸和對稱中心.
(2)根據(jù)三角函數(shù)的單調(diào)性解答.
(3)根據(jù)x的取值范圍求得(2x+$\frac{π}{6}$)的取值范圍,然后由正弦函數(shù)圖象的性質(zhì)求其值域.
解答 解:(1)對于函數(shù)y=$\frac{1}{2}$sin(2x+$\frac{π}{6}$)-1,令2x+$\frac{π}{6}$=kπ+$\frac{π}{2}$,k∈Z,
解得x=$\frac{kπ}{2}$+$\frac{π}{6}$,k∈Z,
故函數(shù)的對稱軸方程為x=$\frac{kπ}{2}$+$\frac{π}{6}$,k∈Z,
令2x+$\frac{π}{6}$=kπ,k∈Z,
解得x=$\frac{kπ}{2}$-$\frac{π}{12}$,k∈Z,
故函數(shù)的對稱中心是($\frac{kπ}{2}$-$\frac{π}{12}$,0),k∈Z.
(2)對于函數(shù)y=$\frac{1}{2}$sin(2x+$\frac{π}{6}$)-1,令2kπ-$\frac{π}{2}$≤2x+$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,k∈Z.
解得kπ-$\frac{π}{3}$≤x≤kπ+$\frac{π}{6}$,k∈Z.
所以該函數(shù)的單調(diào)增區(qū)間是[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$],k∈Z.
令2kπ+$\frac{π}{2}$≤2x+$\frac{π}{6}$≤2kπ+$\frac{3π}{2}$,k∈Z.
解得kπ+$\frac{π}{6}$≤x≤kπ+$\frac{2π}{3}$,k∈Z.
所以該函數(shù)的單調(diào)減區(qū)間是[kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$],k∈Z.
(3)∵x∈(-$\frac{π}{4}$,$\frac{π}{3}$),
∴2x+$\frac{π}{6}$∈(-$\frac{π}{3}$,$\frac{5π}{6}$),
∴y=$\frac{1}{2}$sin(2x+$\frac{π}{6}$)-1的值域是(-$\frac{\sqrt{3}+1}{4}$,$-\frac{1}{2}$).
點評 本題考查了正弦函數(shù)圖象的對稱性,單調(diào)性,屬于基礎(chǔ)題,熟記函數(shù)圖象性質(zhì)即可解題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $[-\frac{3}{4},0)$ | B. | [-1,1) | C. | $[-\frac{1}{2},1)$ | D. | [-1,0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,2] | B. | ($\frac{13}{4}$,2] | C. | (1,3] | D. | ($\frac{13}{4}$,3] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2π | B. | 4π | C. | $\sqrt{6}$π | D. | 6π |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com