(本小題滿分14分)
如圖,沿等腰直角三角形的中位線,將平面折起,平面⊥平面,得到四棱錐,,設(shè)、的中點(diǎn)分別為、,
(1)求證:平面⊥平面
(2)求證:
(3)求平面與平面所成銳二面角的余弦值。
(1)見解析(2)見解析(3)
解析試題分析:(1)證明:平面平面,交線為, ,
平面.
, 兩兩互相垂直,
以為原點(diǎn)建立空間直角坐標(biāo)系, ……2分
因?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/dd/0/scb7j1.png" style="vertical-align:middle;" />為等腰直角三角形,且,則,
則,,,,.
,,,
,,
平面,又平面
平面⊥平面. ……5分
(2)分別為的中點(diǎn),,.
設(shè)平面的法向量,由于
則 即 ,,令,則, .
, 即//平面. ……9分
(3)由(2)可知平面的法向量
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題12分)如圖,已知正四棱柱ABCD—A1B1C1D1中,底面邊長AB=2,側(cè)棱BB1的長為4,過點(diǎn)B作B1C的垂線交側(cè)棱CC1于點(diǎn)E,交B1C于點(diǎn)F,
⑵ 證:平面A1CB⊥平面BDE;
⑵求A1B與平面BDE所成角的正弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)如圖,在四棱錐中,底面是正方形,側(cè)棱底面,,是的中點(diǎn),作交于點(diǎn).
(1)證明 //平面;
(2)求二面角的大小;
(3)證明⊥平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
在三棱錐中,和都是邊長為的等邊三角形,,分別是的中點(diǎn).
(1)求證:平面;
(2)求證:平面⊥平面;
(3)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題共12分)如圖,四邊形是矩形,平面,是上一點(diǎn),平面,點(diǎn),分別是,的中點(diǎn).
(Ⅰ)求證:平面;
(Ⅱ)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知四邊形滿足∥,,是的中點(diǎn),將沿著翻折成,使面面,為的中點(diǎn).
(Ⅰ)求四棱的體積;(Ⅱ)證明:∥面;
(Ⅲ)求面與面所成二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)如圖所示,在四棱錐P—ABCD中,底面是邊長為2的菱形,∠DAB=60°,對(duì)角線AC與BD交于點(diǎn)O,PO⊥平面ABCD,PB與平面ABCD所成角為60°.
(1)求四棱錐的體積;
(2)若E是PB的中點(diǎn),求異面直線DE與PA所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,平面⊥平面,為正方形, ,且分別是線段的中點(diǎn).
(Ⅰ)求證://平面;
(Ⅱ)求異面直線與所成角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com