14.求函數(shù)y=cos2x-2sinx的值域.

分析 換元sinx=t,則函數(shù)化成y=(1-t2)-2t=-(t+1)2+2,其中t∈[-1,1].然后根據(jù)二次函數(shù)在閉區(qū)間上的最值,即可求出函數(shù)y=cos2x-2sinx的值域.

解答 解:設(shè)sinx=t,則cos2x=1-t2,
∴y=cos2x-2sinx=(1-t2)-2t=-(t+1)2+2,
∵t=sinx∈[-1,1],
∴當(dāng)t=-1時,ymax=2;當(dāng)t=1時,ymin=-2,
因此,函數(shù)y=cos2x-2sinx的值域是[-2,2].

點(diǎn)評 本題給出含有三角函數(shù)式的“類二次”函數(shù),求函數(shù)的值域.著重考查了三角函數(shù)的最值和二次函數(shù)在閉區(qū)間上的值域等知識,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)$y={log_{\frac{1}{2}}}({{x^2}+2x-3})$的單調(diào)遞增區(qū)間是( 。
A.(-∞,-3)B.(-∞,-1)C.(-1,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c.已知sinA-sinB=$\frac{1}{3}$sinC,3b=2a,2≤a2+ac≤18,設(shè)△ABC的面積為S,p=$\sqrt{2}$a-S,則p的最小值是$\frac{7\sqrt{2}}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若三點(diǎn)A(2,2),B(a,0),C(0,b)共線(a>0,b>0),則a+2b的最小值為( 。
A.12B.8$\sqrt{2}$C.6-4$\sqrt{2}$D.6+4$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,四邊形ABEF為矩形,四邊形CEFD為直角梯形,CE∥DF,EF⊥FD,平面ABEF⊥平面CEFD,P為AD的中點(diǎn),且AB=EC=$\frac{1}{2}$FD.
(1)求證:CD⊥平面ACF;
(2)若BE=2AB,求二面角B-FC-P的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知命題p:若 x>y,則-x<-y;
命題q:若A>B,則sinA>sinB.
在命題①p∨q ②p∧q;③p∧(¬q);④(¬p)∨q中,真命題是( 。
A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.f:x→x2是集合A到集合B的映射,如果B={1,2},那么A∩B只可能是( 。
A.{1,2}B.{1}或∅C.$\left\{{1,\sqrt{2},2}\right\}$D.{1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.函數(shù)f(x)=$\frac{1}{\sqrt{2x-3}}$的定義域是( 。
A.(0,$\frac{3}{2}$)B.[$\frac{3}{2}$,+∞)C.(-∞,$\frac{3}{2}$]D.($\frac{3}{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.函數(shù)y=$\sqrt{4-{x}^{2}}$+lg(x+1)的連續(xù)區(qū)間為(-1,2].

查看答案和解析>>

同步練習(xí)冊答案