計算機內(nèi)部都以二進制字符表示信息.若u=(a1,a2,…,an),其中ai=0或1(i=1,2,…,n),則稱u是長度為n的字節(jié);設(shè)u=(a1,a2,…,an),v=(b1,b2,…,bn),用d(u,v)表示滿足ai≠bi(i=1,2,…,n)的i的個數(shù).如u=(0,0,0,1),v=(1,0,0,1),則d(u,v)=1.現(xiàn)給出以下三個命題:
①若u=(a1,a2,…,an),v=(b1,b2,…,bn),則0≤d(u,v)≤n;
②對于給定的長度為n的字節(jié)u,滿足d(u,v)=n-1的長度為n的字節(jié)v共有n-1個;
③對于任意的長度都為n的字節(jié)u,v,w,恒有d(u,v)≤d(w,u)+d(w,v).
則其中真命題的序號是( )
A.①
B.①②
C.①③
D.②③
【答案】分析:先理解d(u,v)表示滿足ai≠bi(i=1,2,…,n)的i的個數(shù),可轉(zhuǎn)化為:當(dāng)|ai-bi|=0時,表示 ai與bi相同;而當(dāng)|ai-bi|=1時,表示 ai與bi不相同,進而解出本題.
解答:解:①我們知道:u=(a1,a2,…,an)與v=(b1,b2,…,bn)中,ai與bi(1≤i≤n)可都不相同,亦可都相同,
故0≤d(u,v)≤n,因此①正確;
②設(shè)若u=(a1,a2,…,an),其中ai=0或1(i=1,2,…,n),令v=(b1,b2,…,bn),其中bi=0或1(i=1,2,…,n),
我們知道:當(dāng)|ai-bi|=0時,表示 ai與bi相同;而當(dāng)|ai-bi|=1時,表示 ai與bi不相同.
已知v滿足d(u,v)=n-1,表示|ai-bi|=1中的i的個數(shù)為n-1,而|ai-bi|=0中i的個數(shù)為1,
故適合條件的v的個數(shù)為n,因此②不正確.
③設(shè)u=(a1,a2,…,an),v=(b1,b2,…,bn),w=(c1,c2,…,cn),
d(u,v)=h,d(w,u)=k,d(w,v)=m.
由d(w,u)=k表示|ai-ci|=1中i的個數(shù)為k;由d(w,v)=m表示|bi-ci|=1中i的個數(shù)為m;
由d(u,v)=h表示|ai-bi|=1中i的個數(shù)為h.
設(shè)t是使|ai-ci|=|bi-ci|=0成立的i的個數(shù),可驗證無論ci=0,還是ci=1,
則都有||ai-ci|-|bi-ci||=|ai-bi|=0,
∴h=k+m-2t,∴h≤k+m.
因此對于任意的長度都為n的字節(jié)u,v,w,恒有d(u,v)≤d(w,u)+d(w,v).所以③正確.
故選C.
點評:本題考查的是新定義,可通過特例來理解本題,理解好新定義是解決問題的關(guān)鍵.