【題目】如圖,四棱錐的底面是菱形,交于點底面,點為線段中點,.

(1)求直線所成角的正弦值;

(2)求平面與平面所成二面角的正弦值.

【答案】(1)(2)

【解析】

1)建立空間坐標(biāo)系分別求得直線DPBM的方向向量,進(jìn)而得到異面直線的夾角;(2)分別求兩個平面的法向量,再由向量夾角的計算公式得到結(jié)果.

(1)因為是菱形,所以.又底面,以為原點,直 分別為軸,軸,軸,建立如圖所示空間直角坐標(biāo)系.

,,,,,

所以,,,

,

故直線所成角的余弦值為.

直線所成角的正弦值為.

(2)..

設(shè)平面的一個法向量為,

,得,令,得,

得平面的一個法向量為

,

設(shè)平面的一個法向量為,

,令,得,

得平面的一個法向量為

所以,

故平面與平面所成二面角的正弦值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C:(a>b>0)的離心率為,且過點(1,).

(1)求橢圓C的方程;

(2)設(shè)與圓O:x2+y2=相切的直線l交橢圓CA,B兩點,求OAB面積的最大值,及取得最大值時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取100件,測量這些產(chǎn)品的一項質(zhì)量指標(biāo)值,由測量表得如下頻數(shù)分布表:

質(zhì)量指標(biāo)值分組

[75,85)

[85,95)

[95,105)

[105,115)

[115,125)

頻數(shù)

6

26

38

22

8

I)在答題卡上作出這些數(shù)據(jù)的頻率分布直方圖:

II)估計這種產(chǎn)品質(zhì)量指標(biāo)值的平均數(shù)及方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);

III)根據(jù)以上抽樣調(diào)查數(shù)據(jù),能否認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品符合質(zhì)量指標(biāo)值不低于95的產(chǎn)品至少要占全部產(chǎn)品的80%的規(guī)定?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)為定義在上的奇函數(shù),且當(dāng)時,.

1)求函數(shù)的解析式;

2)求實數(shù),使得函數(shù)在區(qū)間上的值域為;

3)若函數(shù)在區(qū)間上的值域為,則記所有滿足條件的區(qū)間的并集為,設(shè),問是否存在實數(shù),使得集合恰含有個元素?若存在,求出的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,側(cè)面為矩形,,,為棱的中點,交于點,側(cè)面的中點.

(1)證明:平面;

(2)若,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知斜三棱柱的側(cè)面與底面垂直,,,且,,求:

1)側(cè)棱與底面所成角的大;

2)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著我國經(jīng)濟(jì)的飛速發(fā)展,人們的生活水平也同步上升,許許多多的家庭對于資金的管理都有不同的方式。最新調(diào)查表明,人們對于投資理財?shù)呐d趣逐步提高。某投資理財公司做了大量的數(shù)據(jù)調(diào)查,調(diào)查顯示兩種產(chǎn)品投資收益如下:

①投資產(chǎn)品的收益與投資額的算術(shù)平方根成正比;

②投資產(chǎn)品的收益與投資額成正比.

公司提供了投資1萬元時兩種產(chǎn)品的收益,分別是0.4萬元和0.2萬元。

(1) 分別求出產(chǎn)品的收益、產(chǎn)品的收益與投資額的函數(shù)關(guān)系式;

(2) 假如現(xiàn)在你有10萬元的資金全部用于投資理財,你該如何分配資金,才能讓你的收益最大?最大收益是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“中國式過馬路”存在很大的交通安全隱患.某調(diào)查機(jī)構(gòu)為了解路人對“中國式過馬路”的態(tài)度是否與性別有關(guān),從馬路旁隨機(jī)抽取30名路人進(jìn)行了問卷調(diào)查,得到了如下列聯(lián)表:

項目

男性

女性

總計

反感

10

不反感

8

總計

30

已知在這30人中隨機(jī)抽取1人抽到反感“中國式過馬路”的路人的概率是.

(1)請將上面的列聯(lián)表補(bǔ)充完整(直接寫結(jié)果,不需要寫求解過程),并據(jù)此資料分析反感“中國式過馬路”與性別是否有關(guān)?

(2)若從這30人中的女性路人中隨機(jī)抽取2人參加一活動,記反感“中國式過馬路”的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.

附:K2

.

P(K2≥k0)

0.10

0.05

0.010

0.005

k0

2.706

3.841

6.635

7.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】20世紀(jì)30年代,里克特(C.F.Richter)制定了一種表明地震能量大小的尺度,就是使用測震儀地震能量的等級,地震能量越大,測震儀記錄的地震曲線的振幅就越大,這就是我們常說的里氏震級M,其計算公式為其中,A是被測量地震的最大振幅,是“標(biāo)準(zhǔn)地震”的振幅(使用標(biāo)準(zhǔn)地震振幅是為了修正測震儀距實際的距離造成的偏差),眾所周知,5級地震已經(jīng)比較明顯,計算8級地震的最大振幅是5級地震的最大振幅的______.

查看答案和解析>>

同步練習(xí)冊答案