【題目】已知:橢圓 (a>b>0),過點 , 的直線傾斜角為 ,原點到該直線的距離為 .
(1)求橢圓的方程;
(2)斜率大于零的直線過 與橢圓交于E,F(xiàn)兩點,若 ,求直線EF的方程.
科目:高中數(shù)學 來源: 題型:
【題目】已知具有相關關系的兩個變量之間的幾組數(shù)據(jù)如下表所示:
(1)請根據(jù)上表數(shù)據(jù)在網(wǎng)格紙中繪制散點圖;
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關于的線性回歸方程,并估計當時, 的值;
(3)將表格中的數(shù)據(jù)看作五個點的坐標,則從這五個點中隨機抽取3個點,記落在直線右下方的點的個數(shù)為,求的分布列以及期望.
參考公式: , .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義在上的偶函數(shù),其導函數(shù)為,若對任意的實數(shù),都有恒成立,則使成立的實數(shù)的取值范圍為( )
A. B. (﹣∞,﹣1)∪(1,+∞)
C. (﹣1,1) D. (﹣1,0)∪(0,1)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=loga(1+x),g(x)=loga(1﹣x)其中(a>0且a≠1),設h(x)=f(x)﹣g(x).
(1)求函數(shù)h(x)的定義域,判斷h(x)的奇偶性,并說明理由;
(2)若f(3)=2,求使h(x)<0成立的x的集合.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義在R上的奇函數(shù)f(x),當x∈(﹣∞,0)時,f(x)=﹣x2+mx﹣1.
(1)求f(x)的解析式;
(2)若方程f(x)=0有五個不相等的實數(shù)解,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在四棱錐P﹣ABCD中,AD∥BC,AD=AB=DC=BC=1,E是PC的中點,面PAC⊥面ABCD.
(1)證明:ED∥面PAB;
(2)若PC=2,PA=,求二面角A﹣PC﹣D的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設數(shù)列是各項均為正數(shù)的等比數(shù)列,其前項和為,且.
(1)求數(shù)列的通項公式;
(2)設有正整數(shù),使得成等差數(shù)列,求的值;
(3)設,對于給定的,求三個數(shù)經(jīng)適當排序后能構(gòu)成等差數(shù)列的充要條件.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com