已知f(x)=x+sinx,x∈[-1,1],且f(a+
1
3
)+f(2a)>0
,則a的取值范圍是______.
因為:f(x)=x+sinx
所以;f(-x)=-x+sin(-x)=-(x+sinx)=-f(x);
∴f(x)是奇函數(shù)
又因為:f′(x)=1+cosx,在x∈[-1,1]時f′(x)>0;
∴f(x)在x∈[-1,1]上遞增,.
f(a+
1
3
)+f(2a)>0
?f(a+
1
3
)>-f(2a)=f(-2a),
-1<a+
1
3
<1
-1<2a<1
a+
1
3
>2a
?-
1
2
<a<
1
3

故答案為:(-
1
2
,
1
3
).
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ln(ax+b)的圖象在x=1處的切線方程為y=
1
2
x-
1
2
+ln2.
(1)證明:方程f(x)-x=0有且只有一個實根;
(2)若s,t∈(0,+∞),且s<t時,試證明:(1+s)ef(t-1)>(1+t)ef(s-1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
a
=(
2
,-1),
b
=(
2
2
,2).f(x)=x2+
a
2x+
a
b
,數(shù)列{an}滿足a1=1,3an=f (an-1)+1
(n∈N,n≥2),數(shù)列{bn}前n項和為Sn,且bn=
1
an+3

(1)寫出y=f (x)的表達式;
(2)判斷數(shù)列{an}的增減性;
(3)是否存在n1,n2(n1,n2∈N*),使S n1≥1或S n2
1
4
,如果存在,求出n1或n2的值,如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=x(x-a)(x-b),點A(s,f(s)),B(t,f(t)).
(Ⅰ)若a=b=1,求函數(shù)f(x)的單調遞增區(qū)間;
(Ⅱ)若函數(shù)f(x)的導函數(shù)f'(x)滿足:當|x|≤1時,有|f'(x)|≤
3
2
恒成立,求函數(shù)f(x)的解析表達式;
(Ⅲ)若0<a<b,函數(shù)f(x)在x=s和x=t處取得極值,且a+b=2
3
,證明:
OA
OB
不可能垂直.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=x2-alnx在(1,2]上是增函數(shù),g(x)=x-a
x
在(0,1)上是減函數(shù).
(1)求a的值;
(2)設函數(shù)φ(x)=2bx-
1
x2
在(0,1]上是增函數(shù),且對于(0,1]內的任意兩個變量s,t,恒有f(s)≥φ(t)成立,求實數(shù)b的取值范圍;
(3)設h(x)=f′(x)-g(x)-2
x
+
3
x
,求證:[h(x)]n+2≥h(xn)+2n(n∈N*).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(理)已知函數(shù)f(x)=xlnx.

(1)求函數(shù)f(x)的單調區(qū)間和最小值;

(2)當b>0時,求證:bb(其中e=2.718 28…是自然對數(shù)的底數(shù));

(3)若a>0,b>0,證明f(a)+(a+b)ln2≥f(a+b)-f(b).

(文)已知向量m=(x2,y-cx),n=(1,x+b)(x,y,b,c∈R)且mn,把其中x,y所滿足的關系式記為y=f(x).若f′(x)為f(x)的導函數(shù),F(x)=f(x)+af′(x)(a>0),且F(x)是R上的奇函數(shù).

(1)求和c的值.

(2)求函數(shù)f(x)的單調遞減區(qū)間(用字母a表示).

(3)當a=2時,設0<t<4且t≠2,曲線y=f(x)在點A(t,f(t))處的切線與曲線y=f(x)相交于點B(m,f(m))(A與B不重合),直線x=t與y=f(m)相交于點C,△ABC的面積為S,試用t表示△ABC的面積S(t),并求S(t)的最大值.

查看答案和解析>>

同步練習冊答案