已知圓O:x2+y2=1,直線(xiàn)x-2y+5=0上動(dòng)點(diǎn)P,過(guò)點(diǎn)P作圓O的一條切線(xiàn),切點(diǎn)為A,則|PA|的最小值為
 
考點(diǎn):圓的切線(xiàn)方程
專(zhuān)題:直線(xiàn)與圓
分析:利用數(shù)形結(jié)合確定圓心到直線(xiàn)的距離最小時(shí),即可.
解答: 解:∵|PA|=
OP2-OA2
=
OP2-1
,
∴當(dāng)OP最小時(shí),|PA|的距離最小,
此時(shí)圓心到直線(xiàn)的距離d=
5
1+22
=
5
5
=
5
,
此時(shí)|PA|的最小為
(
5
)2-1
=
4
=2,
故答案為:2
點(diǎn)評(píng):本題主要考切線(xiàn)長(zhǎng)公式的應(yīng)用,利用數(shù)形結(jié)合以及點(diǎn)到直線(xiàn)的距離公式是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

試把sin(α+β)cosα-
1
2
[sin(2α+β)-sinβ]化簡(jiǎn)成不含角α的三角函數(shù)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若對(duì)任意實(shí)數(shù)x,不等式|x+3|+|x-1|≥a2-3a恒成立,則實(shí)數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)向量
a
=(sin
π
2
x,cos
π
2
x,
b
=(sin
π
2
x,
3
sin
π
2
x),x∈R,函數(shù)f(x)=
a
•(
a
+2
b
).
(1)求f(x)在[0,1]上的最大值和最小值;
(2)將函數(shù)y=f(x)的圖象向左平移
1
6
個(gè)單位后,再將得到的圖象上的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象,計(jì)算g(1)+g(2)+g(3)+…+g(2015).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平行四邊形ABCD中,已知AB=9,BC=6,
CP
=2
PD
,
AP
BP
=6,則
AB
AD
夾角的余弦值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f[lg(x+1)]的定義域是(0、9],則f(x2)的定義域是( 。
A、[-1,1]
B、(-1,1)
C、[-1,0)∪(0,1]
D、(-1,0)∪(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在R上的奇函數(shù)f(x),當(dāng)x≥0時(shí),f(x)=x2,則f(-2)=
 
,則不等式f(1-2x)<f(3)的解集是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)A(-2,0),B(2,0),條件甲:“△ABC是以C為直角頂點(diǎn)的三角形”;條件乙:“C的坐標(biāo)是方程x2+y2=4的解”,那么甲是乙的( 。
A、必要非充分條件
B、充要條件
C、充分非必要條件
D、既不充分也非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x+2,則該函數(shù)的零點(diǎn)為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案