17.下列函數(shù)既是奇函數(shù)又是偶函數(shù)的是( 。
A.$f(x)=x+\frac{1}{x}$B.$f(x)=\frac{1}{x^2}$
C.$f(x)=\sqrt{{x^2}-1}+\sqrt{1-{x^2}}$D.$f(x)=\left\{\begin{array}{l}\frac{1}{2}{x^2}+1,x>0\\-\frac{1}{2}{x^2}-1,x<0\end{array}\right.$

分析 根據(jù)奇偶性的定義和函數(shù)定義域必須關于原點對稱判斷即可.

解答 解:對于A:$f(x)=x+\frac{1}{x}$,則f(-x)=$-x-\frac{1}{x}$=-f(x),是奇函數(shù).
對于B:$f(x)=\frac{1}{x^2}$,則f(-x)=$\frac{1}{(-x)^{2}}=\frac{1}{{x}^{2}}=f(x)$是偶函數(shù).
對于C:$f(x)=\sqrt{{x^2}-1}+\sqrt{1-{x^2}}$,∵定義域為{-1,1},則f(-x)=f(x)=0,f(-x)=-f(x)=0,∴既是奇函數(shù)又是偶函數(shù)
對于D:$f(x)=\left\{\begin{array}{l}\frac{1}{2}{x^2}+1,x>0\\-\frac{1}{2}{x^2}-1,x<0\end{array}\right.$,則f(-x)=$\left\{\begin{array}{l}{\frac{1}{2}{x}^{2}+1,x<0}\\{-\frac{1}{2}{x}^{2}-1,x>0}\end{array}\right.$⇒f(-x)=-f(x)是奇函數(shù).
故選C.

點評 本題考查了函數(shù)的奇偶性的定義判斷,注意奇偶性判斷的前提條件是函數(shù)定義域必須關于原點對稱.屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)f(x)=$\frac{1}{3}$ax3-bex(a∈R,b∈R),且f(x)在x=0處的切線與x-y+3=0垂直.
(1)若函數(shù)f(x)在[$\frac{1}{2}$,1]存在單調遞增區(qū)間,求實數(shù)a的取值范圍;
(2)若f′(x)有兩個極值點x1,x2,且x1<x2,求a的取值范圍;
(3)在第二問的前提下,證明:-$\frac{e}{2}$<f′(x1)<-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.若AB是過橢圓$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{25}$=1中心的弦,F(xiàn)1為橢圓的焦點,則△F1AB面積的最大值為( 。
A.6B.12C.24D.48

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知函數(shù)f(x)=2sin(2x-$\frac{π}{3}$)-1在區(qū)間[a,b](a,b∈R,且a<b)上至少含有10個零點,在所有滿足條件的[a,b]中,b-a的最小值為$\frac{13π}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.設集合A={x|x2-x-2>0},B={x||x|<3},則A∩B=( 。
A.{x|-3<x<-1}B.{x|2<x<3}C.{x|-3<x<-1或2<x<3}D.{x|-3<x<-2或1<x<3}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.在命題“方程x2=4的解為x=±2”中使用的聯(lián)結詞是( 。
A.B.C.D.無法確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知函數(shù)f(x)=(m+2cos2x)•cos(2x+θ)為奇函數(shù),且f($\frac{π}{4}$)=0,其中m∈R,θ∈(0,π)
(Ⅰ)求函數(shù)f(x)的圖象的對稱中心和單調遞增區(qū)間
(Ⅱ)在△ABC中,角A,B,C的對邊分別是a,b,c,且f($\frac{C}{2}$+$\frac{π}{24}$)=-$\frac{1}{2}$,c=1,ab=2$\sqrt{3}$,求△ABC的周長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知函數(shù)f(x)與g(x)分別是定義在R上的偶函數(shù)和奇函數(shù),且f(x)-g(x)=x3-2-x,則f(2)+g(2)=(  )
A.4B.-4C.2D.-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.直線$\sqrt{3}$x+y+3=0的傾斜角為( 。
A.B.-30°C.350°D.120°

查看答案和解析>>

同步練習冊答案