若關(guān)于x的方程9x+a•3x+4=0有解,則實(shí)數(shù)a的取值范圍是
 
考點(diǎn):指數(shù)函數(shù)的圖像與性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:可分離出a,轉(zhuǎn)化為函數(shù)f(x)=
-9x-4
3x
的值域問題,令3x=t,利用基本不等式和不等式的性質(zhì)求值域即可.
解答: 解:方程9x+a•3x+4=0可化為:a=
-9x-4
3x

令3x=t(t>0),則
-9x-4
3x
=
t2+4
t
=-(t+
4
t
),
因?yàn)閠+
4
t
≥4,
所以
-9x-4
3x
≤-4
所以a的范圍為(-∞,-4]
故答案為:(-∞,-4]
點(diǎn)評(píng):本題考查方程有解問題、基本不等式求最值問題,同時(shí)考查轉(zhuǎn)化思想和換元法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙兩位同學(xué)參加數(shù)學(xué)競(jìng)賽培訓(xùn),現(xiàn)分別從他們?cè)谂嘤?xùn)期間參加的若干次預(yù)賽成績(jī)中隨機(jī)抽取4次,繪制成莖葉圖如圖:
 
  977  
8128535
(Ⅰ)從甲、乙兩人的成績(jī)中各隨機(jī)抽取一個(gè),求甲的成績(jī)比乙高的概率;
(Ⅱ)現(xiàn)要從中選派一人參加數(shù)學(xué)競(jìng)賽,從統(tǒng)計(jì)學(xué)的角度考慮,你認(rèn)為選派哪位學(xué)生參加合適?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)點(diǎn)P的坐標(biāo)為(x0,y0),直線l的方程為Ax+By+C=0.請(qǐng)寫出點(diǎn)P到直線l的距離,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)80.25×
42
+(
32
×
3
6+log32×log2(log327);
(2)
lg8+lg125-lg2-lg5
lg
10
lg0.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

log849
log27
的值是( 。
A、2
B、
3
2
C、1
D、
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若tanθ=3,則cos2θ=( 。
A、
4
5
B、
3
5
C、-
4
5
D、-
3
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)=2tanx-
2sin2
x
2
-1
sin
x
2
cos
x
2
,則f(-
π
12
)的值為( 。
A、-8
B、8
C、4
3
D、-4
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正實(shí)數(shù)x,y滿足x+2y=1,則
1
x
+
2
y
的最小值是( 。
A、6B、8C、9D、16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知ab>0,則
b
a
+
a
b
的最小值為( 。
A、1
B、
2
C、2
D、2
2

查看答案和解析>>

同步練習(xí)冊(cè)答案