已知二次函數(shù)直線(其中,為常數(shù));.若直線1、2與函數(shù)的圖象以及軸與函數(shù)的圖象所圍成的封閉圖形如陰影所示. 

(1)求、的值;

(2)求陰影面積關(guān)于的函數(shù)的解析式;

(3)若問是否存在實數(shù),使得的圖象與的圖象有且只有兩個不同的交點?若存在,求出的值;若不存在,說明理由.

 

【答案】

(I)由圖形可知二次函數(shù)的圖象過點(0,0),(8,0),并且f(x)的最大值為16

,

∴函數(shù)f(x)的解析式為

(Ⅱ)由

∵0≤t≤2,∴直線l1與f(x)的圖象的交點坐標為(

由定積分的幾何意義知:

(Ⅲ)令

因為x>0,要使函數(shù)f(x)與函數(shù)g(x)有且僅有2個不同的交點,則函數(shù)

的圖象與x軸的正半軸有且只有兩個不同的交點

∴x=1或x=3時,

當x∈(0,1)時,是增函數(shù);

當x∈(1,3)時,是減函數(shù)

當x∈(3,+∞)時,是增函數(shù)

又因為當x→0時,;當

所以要使有且僅有兩個不同的正根,必須且只須

, ∴m=7或

∴當m=7或時,函數(shù)f(x)與g(x)的圖象有且只有兩個不同交點。

【解析】略

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)y=f(x)的圖象與x軸相切于點(-1,0),其導(dǎo)函數(shù)y=f′(x)與直線y=2x平行.
(1)求y=f(x)的解析式;
(2)已知
lim
x→+∞
lnx
x
=0
,試討論方程kf′(x)-lnf(x)=0(k∈R)在區(qū)間(-1,+∞)上解得個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源:陜西省2009屆高三教學質(zhì)量檢測模擬試題(一)、數(shù)學 題型:044

已知二次函數(shù)滿足以下條件:

①圖像關(guān)于直線x=對稱;②f(1)=0;③其圖像可由y=x2-1平移得到.

(Ⅰ)求y=f(x)表達式;

(Ⅱ)若數(shù)列{an},{bn}對任意的實數(shù)x都滿足f(x)·g(x)+anx+bn=xn+1(n∈N*),其中g(shù)(x)是定義在實數(shù)集R上的一個函數(shù),求數(shù)列{an},{bn}的通項公式.

(Ⅲ)設(shè)圓Cn:(x-an)2+(y-bn)2,(n∈N*),若圓Cn與圓Cn+1外切,且{rn}是各項都為正數(shù)的等比數(shù)列,求數(shù)列{rn}的公比q的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知二次函數(shù)y=f(x)的圖象與x軸相切于點(-1,0),其導(dǎo)函數(shù)y=f′(x)與直線y=2x平行.
(1)求y=f(x)的解析式;
(2)已知數(shù)學公式數(shù)學公式,試討論方程kf′(x)-lnf(x)=0(k∈R)在區(qū)間(-1,+∞)上解得個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源:2009-2010學年湖北省部分重點中學聯(lián)考高三(上)期中數(shù)學試卷(理科)(解析版) 題型:解答題

已知二次函數(shù)y=f(x)的圖象與x軸相切于點(-1,0),其導(dǎo)函數(shù)y=f′(x)與直線y=2x平行.
(1)求y=f(x)的解析式;
(2)已知,試討論方程kf′(x)-lnf(x)=0(k∈R)在區(qū)間(-1,+∞)上解得個數(shù).

查看答案和解析>>

同步練習冊答案