解△ABC,,a=7,b+c=8

答案:
解析:

由余弦定理得bc=15,∴b=35,c=53,,;


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

△ABC中,a,b,c分別是角A,B,C的對邊,已知A=60°,a=7,現(xiàn)有以下判斷:
①b+c不可能等于15;
②若
AB
AC
=12,則S△ABC=6
3
;
③若b=
3
,則B有兩解.
請將所有正確的判斷序號填在橫線上
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

有以下四個命題:
①△ABC中,“A>B”是“sinA>sinB”的充要條件;
②若數(shù)列{an}為等比數(shù)列,且a4=4,a8=9,則a6=±6;
③不等式
|x-1|
x+5
≤0
的解集為{x|x<-5};
④若P是雙曲線
x2
9
-
y2
16
=1
上一點,F(xiàn)1,F(xiàn)2分別是雙曲線的左、右焦點,且|PF1|=7,則|PF2|=13.
其中真命題的序號為
 
.(把正確的序號都填上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC的內角A,B,C的對邊分別為a,b,c,下列說法中:①在△ABC中,a=x,b=2,B=45°,若該三角形有兩解,則x取值范圍是2<x<2
2
;②在△ABC中,若b=8,c=5,A=60°,則△ABC的外接圓半徑等于
14
3
3
;③在△ABC中,若c=5,
cosA
cosB
=
b
a
=
4
3
,則△ABC的內切圓的半徑為2;④在△ABC中,若AB=4,AC=7,BC=9,則BC邊的中線AD=
7
2
;⑤設三角形ABC的BC邊上的高AD=BC,a、b、c分別表示角A、B、C對應的三邊,則
b
c
+
c
b
的取值范圍是[2,
5
]
.其中正確說法的序號是
①④⑤
①④⑤
(注:把你認為是正確的序號都填上).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列判斷中正確的是(  )

查看答案和解析>>

同步練習冊答案