【題目】已知函數(shù)f(x)與函數(shù)g(x)分別是定義在R上的偶函數(shù)和奇函數(shù),且f(x)+g(x)=x3+x2+1,則f(1)﹣g(1)=

【答案】1
【解析】解:∵f(x)與函數(shù)g(x)分別是定義在R上的偶函數(shù)和奇函數(shù),且f(x)+g(x)=x3+x2+1,
∴f(﹣1)+g(﹣1)=(﹣1)3+(﹣1)2+1=﹣1+1+1=1,
即f(1)﹣g(1)=1,
故答案為:1;
根據(jù)函數(shù)奇偶性的性質(zhì)建立方程即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】觀察下列等式:
①cos2α=2cos2α﹣1;
②cos4α=8cos4α﹣8cos2α+1;
③cos6α=32cos6α﹣48cos4α+18cos2α﹣1;
④cos8α=128cos8α﹣256cos6α+160cos4α﹣32cos2α+1;
⑤cos10α=mcos10α﹣1280cos8α+1120cos6α+ncos4α+pcos2α﹣1;
可以推測,m﹣n+p=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】m=0是方程x2+y2﹣4x+2y+m=0表示圓的( )條件.
A.充分不必要
B.必要不充分
C.充要
D.既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=x2+2xf′(1),則f′(0)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),且f′(x)=x2+2xf′(1),則f′(0)等于(
A.0
B.﹣4
C.﹣2
D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ex﹣ax(a為常數(shù))的圖象與y軸交于點(diǎn)A,曲線y=f(x)在點(diǎn)A處的切線斜率為﹣1.
(1)求a的值及函數(shù)f(x)的極值;
(2)證明:當(dāng)x>0時(shí),x2<ex

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)全集U={l,3,5,7,9},集合M={1,a﹣5},MU且UM={3,5,7},則實(shí)數(shù)a=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)a>1,函數(shù)f(x)=log2(x2+2x+a),x∈[﹣3,3].
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若f(x)的最大值為5,求f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y=2x+log2(x+1)在區(qū)間[0,1]上的最大值和最小值之和為

查看答案和解析>>

同步練習(xí)冊(cè)答案