(本題滿分18分,第1小題4分,第2小題6分,第3小題8分)
已知數(shù)列{an}滿足,(其中λ≠0且λ≠–1,n∈N*),為數(shù)列{an}的前項和.
(1) 若,求的值;
(2) 求數(shù)列{an}的通項公式;
(3) 當時,數(shù)列{an}中是否存在三項構(gòu)成等差數(shù)列,若存在,請求出此三項;若不存在,請說明理由.
(1);(2)數(shù)列{an}中存在a1、a2、a3a3、a2、a1成等差數(shù)列。

試題分析:(1) 令,得到,令,得到。…………2分
,計算得.……………………………………………………4分
(2) 由題意,可得:
,所以有
,又,……………………5分
得到:,故數(shù)列從第二項起是等比數(shù)列。……………7分
又因為,所以n≥2時,……………………………8分
所以數(shù)列{an}的通項…………………………………10分
(3) 因為  所以……………………………………11分
假設數(shù)列{an}中存在三項am、ak、ap成等差數(shù)列,
①不防設m>k>p≥2,因為當n≥2時,數(shù)列{an}單調(diào)遞增,所以2ak=am+ap
即:2´()´4k–2 = ´4m–2 + ´4p–2,化簡得:2´4k - p= 4mp+1
即22k–2p+1=22m–2p+1,若此式成立,必有:2m2p=0且2k–2p+1=1,
故有:m=p=k,和題設矛盾………………………………………………………………14分
②假設存在成等差數(shù)列的三項中包含a1時,
不妨設m=1,k>p≥2且ak>ap,所以2ap = a1+ak ,
2´()´4p–2 = – + ()´4k–2,所以2´4p–2= –2+4k–2,即22p–4 = 22k–5 – 1
因為k > p ≥ 2,所以當且僅當k=3且p=2時成立………………………………………16分
因此,數(shù)列{an}中存在a1a2、a3a3a2、a1成等差數(shù)列……………………………18分
點評:本題主要考查了利用數(shù)列的遞推公式求解數(shù)列的通項公式,還考查了一定的邏輯運算與推理的能力及考查了學生通過已知條件分析問題和解決問題的能力.題目較難。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

已知a,b,a+b成等差數(shù)列,a,b,ab成等比數(shù)列,且0<log<1,則m的取值范圍是(   )
A.m>1B.1<m<8
C.m>8D.0<m<1或m>8

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

的最小值(    )
A.B.C.D.8

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)在數(shù)列中,,并且對于任意n∈N*,都有
(1)證明數(shù)列為等差數(shù)列,并求的通項公式;
(2)設數(shù)列的前n項和為,求使得的最小正整數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在∆ABC中,tanA是以-4為第三項,4為第七項的等差數(shù)列的公差,tanB是以為第三項,9為第六項的等比數(shù)列的公比,則這個三角形是
A.鈍角三角形B.銳角三角形C.等腰直角三角形D.以上都不對

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

等比數(shù)列滿足,數(shù)列滿足
(1)求的通項公式;(5分)
(2)數(shù)列滿足為數(shù)列的前項和.求;(5分)
(3)是否存在正整數(shù),使得成等比數(shù)列?若存在,求出所有 的值;若不存在,請說明理由.(6分)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知等比數(shù)列中,各項都是正數(shù),且3成等差數(shù)列,則
A.1B.C.3 D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知等比數(shù)列中,有,數(shù)列是等差數(shù)列,且,則 (     )
A.2B.4C.8D.16

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知等比數(shù)列各項均為正數(shù),前項和為,若.則公比q=   ,     

查看答案和解析>>

同步練習冊答案