四棱錐中,側(cè)面⊥底面,底面是邊長為的正方形,又,,分別是的中點(diǎn).
(Ⅰ)求證:;
(Ⅱ)求二面角的余弦值.
(1)見解析;(2)
【解析】本題考查的知識點(diǎn)是直線與平面垂直的性質(zhì)及用空間向量求平面間的夾角,其中求二面角的值時(shí),一是幾何法,關(guān)鍵是找到二面有的平面角,二是向量法,關(guān)鍵是求出兩個(gè)平面的法向量.
(1)取AD的中點(diǎn)O,連接OP,OE,由等腰三角形三線合一,及OE∥AB,可得OE⊥AD,又由側(cè)面PAD⊥底面ABCD,我們易得到AD⊥平面OPE.再由線面垂直的性質(zhì)定理可得到AD⊥PE;再證明AD⊥EO
(2)有兩種解法,一是取OE的中點(diǎn)F,連接FG,OG,結(jié)合(1)的結(jié)論,我們易得∠GOE就是二面角E-AD-G的平面角,解三角形GOE即可得到答案;二是建立空間坐標(biāo)系,確定各個(gè)頂點(diǎn)的坐標(biāo),及平面ADE及平面ADG的法向量,然后代入向量夾角公式,我們易求出二面角E-AD-G的余弦值,進(jìn)而求出二面角E-AD-G的正切值.
(1)∵,∴,……………………2分
又是的中點(diǎn),∴OE∥AB,∴OE⊥AD. ……………………4分
又OP∩OE=0,∴AD⊥平面OPE. ……………………6分
(2)建立如圖所示的空間直角坐標(biāo)系,則A(1,0,0),D(-1,0,0),P(0,0,),E(0,2,0),
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
PQ |
PC |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
PE |
PC |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
3 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com