已知f(α)=
sin(
π
2
+α)+3sin(-π-α)
2cos(
11π
2
-α)-cos(5π-α)

(Ⅰ)化簡f(α);
(Ⅱ)已知tanα=3,求f(α)的值.
分析:(Ⅰ)直接利用誘導公式,化簡f(α)即可;
(Ⅱ)表達式的分子、分母同除cosx,得到tanx的表達式,通過tanα=3,即可求出f(α)的值.
解答:解:(Ⅰ)因為f(α)=
sin(
π
2
+α)+3sin(-π-α)
2cos(
11π
2
-α)-cos(5π-α)

所以f(α)=
cosα+3sinα
-2sinα+cosα

(Ⅱ)因為tanα=3,f(α)=
cosα+3sinα
-2sinα+cosα
=
1+3tanα
-2tanα+1
=
10
-5
=-2
點評:本題是基礎題,考查三角函數(shù)的齊次式求值的應用,考查計算能力,注意“1”的代換,以及解題的策略.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知f(α)=
sin(-α-
2
)cos(
2
-α)tan2(π-α)
cos(
π
2
-α)sin(
π
2
+α)

(1)化簡f(α)
(2)若sinα是方程5x2-7x-6=0的根,且α是第三象限的角,求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(α)=
sin(
π
2
-α)cos(2π-α)tan(-α+π)
tan(π+α)sin(-π-α)

(1)化簡f(α);(2)若cos(α-
π
2
)=
1
5
,求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(α)=
sin(
π
2
+α)+3sin(-π-α)
2cos(
11π
2
-α)-cos(5π-α)

(1)化簡f(α);               
(2)已知tanα=3,求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(α)=
sin(π-α)•cos(2π-α)•tan(-π-α)
sin(-π-α)

(1)求f(α);  
(2)若α是第三象限角,且cos(α-
2
)=
1
5
,則f(α)的值;
(3)若α=-1860°,求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(α)=
sin(2π-α)cos(π+α)cos(
π
2
+α)cos(
11π
2
-α)
cos(π-α)sin(3π-α)sin(-π-α)sin(
2
+α)

(Ⅰ)化簡f(α);
(Ⅱ)若α是第三象限角,且cos(
2
-α)=
1
5
,求f(α)的值.

查看答案和解析>>

同步練習冊答案