給出下列命題:
①命題“若b2-4ac<0,則方程ax2+bx+c=0(a≠0)無實根”的否命題;
②命題“△ABC中,AB=BC=CA,那么△ABC為等邊三角形”的逆命題;
③命題“若a>b>0,則
3a
3b
>0”的逆否命題;
④“若m>1,則mx2-2(m+1)x+(m-3)>0的解集為R”的逆命題.
其中真命題的序號為______.
①命題“若b2-4ac<0,則方程ax2+bx+c=0(a≠0)無實根”的否命題是“若b2-4ac≥0,則方程ax2+bx+c=0(a≠0)有實根”,是正確的;
②命題“△ABC中,AB=BC=CA,那么△ABC為等邊三角形”的逆命題是“△ABC是等邊三角形,則AB=BC=CA”,是正確的;
③命題“若a>b>0,則
3a
3b
>0”是正確的,∴它的逆否命題也是正確的;
④命題“若m>1,則mx2-2(m+1)x+(m-3)>0的解集為R”的逆命題是“若mx2-2(m+1)x+(m-3)>0的解集為R,則m>1”是錯誤的,
∵不等式的解集為R時,
m>0
4(m+1)2-4m(m-3)<0
的解集為∅,∴逆命題是錯誤的;
∴正確命題有①②③;
故答案為:①②③.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

若命題“p∧q”為假,且?p為假,則( 。
A.“p∨q”為假B.q為假C.p為假D.q為真

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知命題P:?x∈R,ax2+2x-3>0.如果命題?P是真命題,那么a的范圍是______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知平行六面體ABCD-A1B1C1D1,AC1與平面A1BD,CB1D1交于E,F(xiàn)兩點.給出以下命題,其中真命題有______(寫出所有正確命題的序號)
①點E,F(xiàn)為線段AC1的兩個三等分點;
ED1
=-
2
3
DC
+
1
3
AD
+
1
3
AA1

③設A1D1中點為M,CD的中點為N,則直線MN與面A1DB有一個交點;
④E為△A1BD的內(nèi)心;
⑤若∠A1AD=∠A1AB=∠BAD=60°,且AA1=AB=AD=1,則三棱錐A1-ABD為正三棱錐,且|AC1|=
6

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

下列命題中,錯誤的是( 。
A.平行于同一直線的兩個平面平行
B.平行于同一平面的兩個平面平行
C.一條直線與兩個平行平面中的一個相交,那么這條直線必與另一個平面相交
D.一條直線與兩個平行平面所成的角相等

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù)f(x)=a•2|x|+1(a≠0),定義函數(shù)F(x)=
f(x),x>0
-f(x),x<0
給出下列命題:
①F(x)=|f(x)|;
②函數(shù)F(x)是奇函數(shù);
③當a<0時,若mn<0,m+n>0,總有F(m)+F(n)<0成立,
其中所有正確命題的序號是( 。
A.②B.①③C.②③D.①②

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

給出以下四個命題:
①將一枚硬幣拋擲兩次,設事件A:“兩次都出現(xiàn)正面”,事件B:“兩次都出現(xiàn)反面”,則事件A與B是對立事件;
②在命題①中,事件A與B是互斥事件;
③在10件產(chǎn)品中有3件是次品,從中任取3件.事件A:“所取3件中最多有2件次品”,事件B:“所取3件中至少有2件次品”,則事件A與B是互斥事件;
④若事件A、B滿足P(A)+P(B)=1,則A、B是對立事件.
則以上命題中假命題是______(寫出所有假命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知m是一條直線,α,β是兩個不同的平面,給出下列四個命題:
①若α⊥β,m?α,則m⊥β;
②若m?α,αβ,則mβ;
③若mα,mβ,則αβ;
④若m?α,m⊥β,則α⊥β.
其中正確的命題的序號是( 。
A.①③B.②C.①④D.②④

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知命題P:?x∈R,sinx=1;命題q:?x∈R,x2+1<0,則下列判斷正確的是( 。
A.p是假命題B.q是真命題C.-p是假命題D.-q是假命題

查看答案和解析>>

同步練習冊答案