橢圓
的兩焦點之間的距離為
試題分析:根據(jù)題意,由于橢圓的方程為
,故可知長半軸的長為
,那么可知兩個焦點 的坐標(biāo)為
,因此可知兩焦點之間的距離為
,故選C
點評:解決的關(guān)鍵是將方程變?yōu)闃?biāo)準(zhǔn)式,然后結(jié)合性質(zhì)得到結(jié)論,屬于基礎(chǔ)題。
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)
設(shè)點
到直線
的距離與它到定點
的距離之比為
,并記點
的軌跡為曲線
.
(Ⅰ)求曲線
的方程;
(Ⅱ)設(shè)
,過點
的直線
與曲線
相交于
兩點,當(dāng)線段
的中點落在由四點
構(gòu)成的四邊形內(nèi)(包括邊界)時,求直線
斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
若點
到雙曲線
的一條漸近線的距離為
,則該雙曲線的離心率為
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
的中心為坐標(biāo)原點
,一個長軸端點為
,短軸端點和焦點所組成的四邊形為正方形,若直線
與
軸交于點
,與橢圓
交于不同的兩點
,且
。(14分)
(1)求橢圓
的方程;
(2)求實數(shù)
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)
已知橢圓
的右焦點
,且
,設(shè)短軸的一個端點為
,原點
到直線
的距離為
,過原點和
軸不重合的直線與橢圓
相交于
兩點,且
.
(1)求橢圓
的方程;
(2)是否存在過點
的直線
與橢圓
相交于不同的兩點
,且使得
成立?若存在,試求出直線
的方程;若不存在,請說明理由
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
設(shè)定點M(3,
)與拋物線
=2x上的點P的距離為
,P到拋物線準(zhǔn)線
l的距為
,則
+
取最小值時,P點的坐標(biāo)為
A.(0,0) | B.(1,) | C.(2,2) | D.(,-) |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
在直角坐標(biāo)系
中,以O(shè)為極點,
軸正半軸為極軸建立極坐標(biāo)系,曲線C
1的極坐標(biāo)方程為
,曲線
的參數(shù)方程為
,(
為參數(shù),
)。
(Ⅰ)求C
1的直角坐標(biāo)方程;
(Ⅱ)當(dāng)C
1與C
2有兩個公共點時,求實數(shù)
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)
已知拋物線C
1:y
2=4x的焦點與橢圓C
2:
的右焦點F
2重合,F(xiàn)
1是橢圓的左焦點;
(Ⅰ)在
ABC中,若A(-4,0),B(0,-3),點C在拋物線y
2=4x上運動,求
ABC重心G的軌跡方程;
(Ⅱ)若P是拋物線C
1與橢圓C
2的一個公共點,且∠PF
1F
2=
,∠PF
2F
1=
,求cos
的值及
PF
1F
2的面積。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知
為橢圓
的兩個焦點,過
的直線交橢圓于
兩點。若
,則
=
查看答案和解析>>