如圖,⊙O1、⊙O2交于點(diǎn)M、N,直線AB過(guò)M,于⊙O1、⊙O2分別交于點(diǎn)A、B,直線CD過(guò)點(diǎn)N,與⊙O1、⊙O2分別交于點(diǎn)C、D.求證:AC∥BD.

答案:
解析:

  證明:連結(jié)MN.

  因?yàn)樗倪呅蜛CNM是圓內(nèi)接四邊形,

  所以∠A+∠MNC=180°.

  又因?yàn)樗倪呅蜝DNM是圓內(nèi)接四邊形,

  所以∠MNC=∠B.

  所以∠A+∠B=180°.

  所以AC∥BD.

  分析:兩圓相交的問(wèn)題,公共弦是溝通兩圓的橋梁.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,O1與O2外切于點(diǎn)P,經(jīng)過(guò)O1上一點(diǎn)A作O1的切線交O2于B、C兩點(diǎn),直線AP交O2于點(diǎn)D,連接DC、PC.
求證:DC2=DP•DA.精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

15、如圖,⊙O1與⊙O2交于M、N兩點(diǎn),直線AE與這兩個(gè)圓及MN依次交于A、B、C、D、E;且AD=19,BE=16,BC=4,則AE=
28

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,⊙O1和⊙O2公切線AD和BC相交于點(diǎn)D,A、B、C為切點(diǎn),直線DO1與⊙O1與E、G兩點(diǎn),直線DO2交⊙O2與F、H兩點(diǎn).
(1)求證:△DEF~△DHG;
(2)若⊙O1和⊙O2的半徑之比為9:16,求
DEDF
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

選修4-1:幾何證明選講
如圖,⊙O1與⊙O2交于M、N兩點(diǎn),直線AE與這兩個(gè)圓及MN依次交于A、B、C、D、E.且AD=19,BE=16,BC=4,求線段AE的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(選修4-1:幾何證明選講)
如圖,⊙O1與⊙O2交于M、N兩點(diǎn),直線AE與這兩個(gè)圓及MN依次交于A、B、C、D、E.
求證:AB•CD=BC•DE.

查看答案和解析>>

同步練習(xí)冊(cè)答案