(1)已知sin
α
2
-cos
α
2
=
1
5
,求sinα的值;
(2)已知α,β都是銳角,tanα=
1
7
,tanβ=
1
3
,求tan(α+2β)的值.
考點(diǎn):兩角和與差的正切函數(shù),同角三角函數(shù)基本關(guān)系的運(yùn)用
專題:三角函數(shù)的求值
分析:(1)把所給的等式平方,利用同角三角函數(shù)的基本關(guān)系求得sinα的值.
(2)由條件求得tan2β的值,再利用兩角和的正切公式求得tan(α+2β)的值.
解答: 解:(1)∵(sin
α
2
-cos
α
2
)2=1-sinα=
1
25
sinα=
24
25

(2)∵tan2β=
2tanβ
1-tan2β
=
3
4
,∴tan(α+2β)=
tanα+tan2β
1-tanα•tan2β
=
1
7
+
3
4
1-
1
7
×
3
4
=1
點(diǎn)評(píng):本題主要考查了同角三角函數(shù)的基本關(guān)系,正弦的二倍角公式,正切的和角、倍角公式,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)多面體的三視圖和直觀圖如圖所示,其中正視圖和俯視圖均為矩形,側(cè)視圖為直角三角形,M是AB的中點(diǎn).
(1)求證:CM⊥平面FDM;
(2)求直線DM與平面ABEF所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

化簡(jiǎn):4n+3×4n-1+32×4n-2+…+3n-1×4+3n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,四棱錐P-ABCD中,四邊形ABCD為平行四邊形,面PAD⊥平面ABCD,PA=PD,Q為AD的中點(diǎn),且QB⊥AD.
(Ⅰ)求證:PB⊥BC;
(Ⅱ)若點(diǎn)M在PC上,且
PM
MC
=
1
2
,求三棱錐C-MQB與四棱錐P-ABCD的體積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知cosα=-
3
5
,α是第二象限的角,求
sin(
π
2
-α)
tan(π-α)
值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,a1=1,anan+1=(
1
2
n,(n∈N*
(1)求a1,a2,a3,a4
(2)求證:數(shù)列{a2n}與{a2n-1}(n∈N*)都是等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,以x軸正半軸為始邊的兩個(gè)銳角α、β,它們的終邊分別交單位圓于A、B兩點(diǎn).
(1)若A、B兩點(diǎn)的橫坐標(biāo)分別是
10
10
2
5
5
,求sin(α+β)
(2)若cosα+cosβ=
3
2
,sinα+sinβ=1,求cos(α-β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=-x2+2b|x|+6,x∈[-1,a],且a>-1,
(1)若a=0,b=3,求函數(shù)f(x)的值域;
(2)若b=3,且函數(shù)y=f(x)-11有三個(gè)不同的零點(diǎn),求實(shí)數(shù)a的取值范圍.
(3)若b是常數(shù)且|b|>1,設(shè)函數(shù)y=f(x)的最大值為g(a),求g(a)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,a1=1,前n項(xiàng)和Sn=
n+2
3
an(n∈N*),則a2=
 
,通項(xiàng)公式an=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案