已知函數(shù)f(x)是(-∞,+∞)上的增函數(shù),a,b∈R.

(1)若a+b≥0,求證:f(a)+f(b)≥f(-a)+f(-b);

(2)判斷(1)中命題的逆命題是否成立,并證明你的結(jié)論.

 

【答案】

(1) 證明:∵a+b≥0,∴a≥-b. 由f(x)的單調(diào)性得f(a)≥f(-b) 又a+b≥0?b≥-a?f(b)≥f(-a) 兩式相加即得:f(a)+f(b)≥f(-a)+f(-b) (2) 逆命題成立,假設(shè)a+b<0,那么,?f(a)+f(b)<f(-a)+f(-b) 這與已知矛盾,故只有a+b≥0

【解析】

試題分析:(1)證明:∵a+b≥0,∴a≥-b.           2分

由已知f(x)的單調(diào)性得f(a)≥f(-b).

又a+b≥0?b≥-a?f(b)≥f(-a).         4分

兩式相加即得:f(a)+f(b)≥f(-a)+f(-b).         6分

(2)逆命題:

f(a)+f(b)≥f(-a)+f(-b)?a+b≥0.           8分

下面用反證法證之.

假設(shè)a+b<0,那么:

?f(a)+f(b)<f(-a)+f(-b).          10分

這與已知矛盾,故只有a+b≥0.逆命題得證.          12分

考點(diǎn):函數(shù)單調(diào)性與反證法

點(diǎn)評(píng):?jiǎn)握{(diào)性的定義:在定義域的某個(gè)區(qū)間上,若有則函數(shù)為增函數(shù),若有則函數(shù)為減函數(shù);反證法證明的大體步驟:假設(shè)要證明的結(jié)論反面成立,借此推出與已知或定理發(fā)生矛盾,推翻假設(shè)肯定原結(jié)論成立

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)是定義在R上的偶函數(shù),且滿足f(x+1)+f(x)=3,當(dāng)x∈[0,1]時(shí),f(x)=2-x,則f(-2 005.5)?的值為(    )

A.0.5            B.1.5           C.-1.5           D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)是可導(dǎo)函數(shù),且f′(a)=1,則等于____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)是定義域?yàn)镽的偶函數(shù),在(0,+∞)上是減函數(shù),若f()>0>f(),則方程f(x)=0的根的個(gè)數(shù)是(    )

A.2               B.2或1                C.3                     D.2或3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)是定義在R上的偶函數(shù),且當(dāng)x>0時(shí),f(x)=ln(x+1),則函數(shù)f(x)的圖象大致為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年人教版高考數(shù)學(xué)文科二輪專(zhuān)題復(fù)習(xí)提分訓(xùn)練2練習(xí)卷(解析版) 題型:選擇題

已知函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x(-,0]時(shí),f(x)=e-x-ex2+a,則函數(shù)f(x)x=1處的切線方程為(  )

(A)x+y=0 (B)ex-y+1-e=0

(C)ex+y-1-e=0 (D)x-y=0

 

查看答案和解析>>

同步練習(xí)冊(cè)答案