已知函數(shù)f(x)是(-∞,+∞)上的增函數(shù),a,b∈R.
(1)若a+b≥0,求證:f(a)+f(b)≥f(-a)+f(-b);
(2)判斷(1)中命題的逆命題是否成立,并證明你的結(jié)論.
(1) 證明:∵a+b≥0,∴a≥-b. 由f(x)的單調(diào)性得f(a)≥f(-b) 又a+b≥0?b≥-a?f(b)≥f(-a) 兩式相加即得:f(a)+f(b)≥f(-a)+f(-b) (2) 逆命題成立,假設(shè)a+b<0,那么,?f(a)+f(b)<f(-a)+f(-b) 這與已知矛盾,故只有a+b≥0
【解析】
試題分析:(1)證明:∵a+b≥0,∴a≥-b. 2分
由已知f(x)的單調(diào)性得f(a)≥f(-b).
又a+b≥0?b≥-a?f(b)≥f(-a). 4分
兩式相加即得:f(a)+f(b)≥f(-a)+f(-b). 6分
(2)逆命題:
f(a)+f(b)≥f(-a)+f(-b)?a+b≥0. 8分
下面用反證法證之.
假設(shè)a+b<0,那么:
?f(a)+f(b)<f(-a)+f(-b). 10分
這與已知矛盾,故只有a+b≥0.逆命題得證. 12分
考點(diǎn):函數(shù)單調(diào)性與反證法
點(diǎn)評(píng):?jiǎn)握{(diào)性的定義:在定義域的某個(gè)區(qū)間上,若有則函數(shù)為增函數(shù),若有則函數(shù)為減函數(shù);反證法證明的大體步驟:假設(shè)要證明的結(jié)論反面成立,借此推出與已知或定理發(fā)生矛盾,推翻假設(shè)肯定原結(jié)論成立
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
A.0.5 B.1.5 C.-1.5 D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
A.2 B.2或1 C.3 D.2或3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù)f(x)是定義在R上的偶函數(shù),且當(dāng)x>0時(shí),f(x)=ln(x+1),則函數(shù)f(x)的圖象大致為( )
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年人教版高考數(shù)學(xué)文科二輪專(zhuān)題復(fù)習(xí)提分訓(xùn)練2練習(xí)卷(解析版) 題型:選擇題
已知函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x∈(-∞,0]時(shí),f(x)=e-x-ex2+a,則函數(shù)f(x)在x=1處的切線方程為( )
(A)x+y=0 (B)ex-y+1-e=0
(C)ex+y-1-e=0 (D)x-y=0
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com