己知x=1是函數(shù)f(x)=mx3-3(m+1)x2+nx+1的一個(gè)極值點(diǎn),其中m,n∈R,m<0
(1)求m與n的關(guān)系表達(dá)式
(2)求f(x)的單調(diào)區(qū)間
(3)當(dāng)x∈[-1,1]時(shí),函數(shù)y=f(x)的圖象上任意一點(diǎn)的切線斜率恒大于3m,求m的取值范圍.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:湖南省岳陽市一中2009屆高三第七次月考數(shù)學(xué)(文)試題 題型:044
對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0).
定義:(1)設(shè)是函數(shù)y=f(x)的導(dǎo)數(shù)y=的導(dǎo)數(shù),若方程=0有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”;
定義:(2)設(shè)x0為常數(shù),若定義在R上的函數(shù)y=f(x)對于定義域內(nèi)的一切實(shí)數(shù)x,都有f(x0+x)+f(x0-x)=2f(x0)成立,則函數(shù)y=f(x)的圖象關(guān)于點(diǎn)(x0,f(x0))對稱.
己知f(x)=x3-3x2+2x+2,請回答下列問題:
(1)求函數(shù)f(x)的“拐點(diǎn)”A的坐標(biāo)
(2)檢驗(yàn)函數(shù)f(x)的圖象是否關(guān)于“拐點(diǎn)”A對稱,對于任意的三次函數(shù)寫出一個(gè)有關(guān)“拐點(diǎn)”的結(jié)論(不必證明)
(3)寫出一個(gè)三次函數(shù)G(x),使得它的“拐點(diǎn)”是(-1,3)(不要過程)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:江蘇省梅村高級中學(xué)2012屆高三11月練習(xí)數(shù)學(xué)試題 題型:044
對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0).
定義:(1)設(shè)(x)是函數(shù)y=f(x)的導(dǎo)數(shù)y=(x)的導(dǎo)數(shù),若方程(x)=0有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”;
定義:(2)設(shè)x0為常數(shù),若定義在R上的函數(shù)y=f(x)對于定義域內(nèi)的一切實(shí)數(shù)x,都有f(x0+x)+f(x0-x)=2f(x0)成立,則函數(shù)y=f(x)的圖象關(guān)于點(diǎn)(x0,f(x0))對稱.
己知f(x)=x3-3x2+2x+2,請回答下列問題:
(1)求函數(shù)f(x)的“拐點(diǎn)”A的坐標(biāo)
(2)檢驗(yàn)函數(shù)f(x)的圖象是否關(guān)于“拐點(diǎn)”A對稱,對于任意的三次函數(shù)寫出一個(gè)有關(guān)“拐點(diǎn)”的結(jié)論(不必證明)
(3)寫出一個(gè)三次函數(shù)G(x),使得它的“拐點(diǎn)”是(-1,3)(不要過程)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:江蘇省揚(yáng)州中學(xué)2012屆高三11月練習(xí)數(shù)學(xué)試題 題型:044
對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0).
定義:(1)設(shè)是函數(shù)y=f(x)的導(dǎo)數(shù)的導(dǎo)數(shù),若方程有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”;
定義:(2)設(shè)x0為常數(shù),若定義在R上的函數(shù)y=f(x)對于定義域內(nèi)的一切實(shí)數(shù)x,都有f(x0+x)+(x0-x)=2f(x0)成立,則函數(shù)y=f(x)的圖象關(guān)于點(diǎn)(x0,f(x0))對稱.
己知f(x)=x3-3x2+2x+2,請回答下列問題:
(1)求函數(shù)f(x)的“拐點(diǎn)”A的坐標(biāo)
(2)檢驗(yàn)函數(shù)f(x)的圖象是否關(guān)于“拐點(diǎn)”A對稱,對于任意的三次函數(shù)寫出一個(gè)有關(guān)“拐點(diǎn)”的結(jié)論(不必證明)
(3)寫出一個(gè)三次函數(shù)G(x),使得它的“拐點(diǎn)”是(-1,3)(不要過程)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:江蘇省揚(yáng)州中學(xué)2012屆高三上學(xué)期11月練習(xí)數(shù)學(xué)試題 題型:044
對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0).
定義:(1)設(shè)是函數(shù)y=f(x)的導(dǎo)數(shù)的導(dǎo)數(shù),若方程=0有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”;
定義:(2)設(shè)x0為常數(shù),若定義在R上的函數(shù)y=f(x)對于定義域內(nèi)的一切實(shí)數(shù)x,都有f(x0+x)+f(x0-x)=2f(x0)成立,則函數(shù)y=f(x)的圖象關(guān)于點(diǎn)(x0,f(x0))對稱.
己知f(x)=x3-2x2+2,請回答下列問題:
(1)求函數(shù)f(x)的“拐點(diǎn)”A的坐標(biāo)
(2)檢驗(yàn)函數(shù)f(x)的圖象是否關(guān)于“拐點(diǎn)”A對稱,對于任意的三次函數(shù)寫出一個(gè)有關(guān)“拐點(diǎn)”的結(jié)論(不必證明)
(3)寫出一個(gè)三次函數(shù)G(x),使得它的“拐點(diǎn)”是(-1,3)(不要過程)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com