【題目】已知等差數(shù)列{an}的公差d≠0,Sn為其前n項和,若a2 , a3 , a6成等比數(shù)列,且a10=﹣17,則 的最小值是(
A.
B.
C.
D.

【答案】A
【解析】解:∵等差數(shù)列{an}的公差d≠0,a2 , a3 , a6成等比數(shù)列,且a10=﹣17, ∴(a1+2d)2=(a1+d)(a1+5d),a10=a1+9d=﹣17
解得d=﹣2,a1=1或d=0,a1=﹣17(舍去)
當(dāng)d=﹣2時,Sn=n+ =﹣n2+2n,
=
,
解可得2+ ≤n≤3+ ,
即n=4時, 取得最小值,且 =﹣ ;
故選:A.
【考點(diǎn)精析】本題主要考查了等比數(shù)列的通項公式(及其變式)的相關(guān)知識點(diǎn),需要掌握通項公式:才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為 (t為參數(shù)),若以該直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρsin2θ﹣4cosθ=0.
(1)求直線l與曲線C的普通方程;
(2)已知直線l與曲線C交于A,B兩點(diǎn),設(shè)M(2,0),求| |的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在梯形ABCD中,AB∥CD,AD=DC=CB=2,∠ABC=60°,平面ACEF⊥平面ABCD,四邊形ACEF是菱形,∠CAF=60°.
(1)求證:BC⊥平面ACEF;
(2)求平面ABF與平面ADF所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|x+ |+|x﹣a|(a>0) (Ⅰ)證明:f(x)≥2 ;
(Ⅱ)當(dāng)a=1時,求不等式f(x)≥5的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=4x﹣2x , 實數(shù)s,t滿足f(s)+f(t)=0,a=2s+2t , b=2s+t
(1)當(dāng)函數(shù)f(x)的定義域為[﹣1,1]時,求f(x)的值域;
(2)求函數(shù)關(guān)系式b=g(a),并求函數(shù)g(a)的定義域D;
(3)在(2)的結(jié)論中,對任意x1∈D,都存在x2∈[﹣1,1],使得g(x1)=f(x2)+m成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在長方體ABCD﹣A1B1C1D1中,E,F(xiàn)分別是AB,CD1的中點(diǎn),AA1=AD=1,AB=2.
(1)求證:EF∥平面BCC1B1;
(2)求證:平面CD1E⊥平面D1DE;
(3)在線段CD1上是否存在一點(diǎn)Q,使得二面角Q﹣DE﹣D1為45°,若存在,求 的值,不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱ABC﹣A1B1C1中,底面為正三角形,側(cè)棱垂直底面,AB=4,AA1=6,若E,F(xiàn)分別是棱BB1 , CC1上的點(diǎn),且BE=B1E,C1F= CC1 , 則異面直線A1E與AF所成角的余弦值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(x﹣2)ex+ax(a∈R)
(1)試確定函數(shù)f(x)的零點(diǎn)個數(shù);
(2)設(shè)x1 , x2是函數(shù)f(x)的兩個零點(diǎn),當(dāng)x1+x2≤2時,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{an}中,an+2﹣2an+1+an=1(n∈N*),a1=1,a2=3..
(1)求證:{an+1﹣an}是等差數(shù)列;
(2)求數(shù)列{ }的前n項和Sn

查看答案和解析>>

同步練習(xí)冊答案