已知數(shù)列{an}滿(mǎn)足Sn+an=2n+1(n≥1,且n∈N*
(1)求出a1,a2,a3的值;
(2)由(1)猜想出數(shù)列{an}的通項(xiàng)公式an,并用數(shù)學(xué)歸納法證明.
考點(diǎn):數(shù)學(xué)歸納法,數(shù)列的概念及簡(jiǎn)單表示法,數(shù)列遞推式
專(zhuān)題:綜合題,點(diǎn)列、遞歸數(shù)列與數(shù)學(xué)歸納法
分析:(1)根據(jù)Sn+an=2n+1,代入即可求出a1,a2,a3
(2)總結(jié)出規(guī)律求出an,然后利用歸納法進(jìn)行證明,檢驗(yàn)n=1時(shí)等式成立,假設(shè)n=k時(shí)命題成立,證明當(dāng)n=k+1時(shí)命題也成立.
解答: 解:(1)由a1+a1=2-+1,得a1=
3
2
,
由a1+a2+a2=2×2+1,得a2=
7
4
,
同理a3=
15
8

(2)猜測(cè)an=2-
1
2n
(n∈N*
證明:①由(1)當(dāng)n=1時(shí),a1=
3
2
命題成立;
②假設(shè)n=k時(shí),ak=2-
1
2k
成立,
則n=k+1時(shí),由已知Sk+1+ak+1=Sk+2ak+1=2k+3,
把Sk=2k+1-ak及ak=2-
1
2k
代入化簡(jiǎn)ak+1=2-
1
2k+1

即n=k+1時(shí),命題成立.
由①②得an=2-
1
2n
(n∈N*).
點(diǎn)評(píng):此題主要考查歸納法的證明,歸納法一般三個(gè)步驟:(1)驗(yàn)證n=1成立;(2)假設(shè)n=k成立;(3)利用已知條件證明n=k+1也成立,從而求證,這是數(shù)列的通項(xiàng)一種常用求解的方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在直角坐標(biāo)系xOy中,直線(xiàn)l的參數(shù)方程為
x=t-3
y=
3
t
,(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)C的極坐標(biāo)方程為ρ2-4ρcosθ+3=0
(Ⅰ)求直線(xiàn)l的普通方程和曲線(xiàn)C的直角坐標(biāo)方程;
(Ⅱ)設(shè)點(diǎn)P是曲線(xiàn)C上的一個(gè)動(dòng)點(diǎn),求它到直線(xiàn)l的距離d的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a>1,b>1,且a≠b,令P=lg
a+b
2
,Q=
lga+lgb
2
,則( 。
A、P<QB、P=Q
C、P>QD、P與Q的大小不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不等式x2-3x≤0的解集是( 。
A、{x|0<x≤3}
B、{x|0≤x<3}
C、{x|0≤x≤3}
D、{x|x≤0或x≥3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

自然數(shù)列按如圖規(guī)律排列,若2013在第m行第n個(gè)數(shù),則
n
m
=( 。
1
3 2
4 5 6
10 9 8 7
11 12 13 14 15
A、
19
21
B、
20
21
C、
10
11
D、
21
22

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在區(qū)間[-1,1]上的函數(shù)f(x)=
2x+b
x2+1
為奇函數(shù).
(1)求實(shí)數(shù)b的值.
(2)判斷函數(shù)f(x)在區(qū)間(-1,1)上的單調(diào)性,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在平面直角坐標(biāo)系xOy中,設(shè)橢圓E:
x2
a2
+
y2
b2
=1(a>b>0),其中b=
3
2
a,過(guò)橢圓E內(nèi)一點(diǎn)P(1,1)的兩條直線(xiàn)分別與橢圓交于點(diǎn)A,C和B,D,且滿(mǎn)足
AP
PC
,
BP
PD
,其中λ為正常數(shù).當(dāng)點(diǎn)C恰為橢圓的右頂點(diǎn)時(shí),對(duì)應(yīng)的λ=
5
7

(1)求橢圓E的離心率;
(2)求a與b的值;
(3)當(dāng)λ變化時(shí),kAB是否為定值?若是,請(qǐng)求出此定值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,a,b,c分別為內(nèi)角A,B,C的對(duì)邊,已知a=3,b=5,c=7.
(1)求△ABC的最大內(nèi)角;
(2)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知cosα=
13
14
,cos(α-β)=-
1
7
,0<α<
π
2
<β<π.
求:(1)tan2α;(2)β

查看答案和解析>>

同步練習(xí)冊(cè)答案