若直線
與橢圓
+y
2=1相交于A,B兩點,當t變化時,AB的最大值是________.
解法1:直線是斜率為1的一組平行線,由橢圓的對稱性知,當直線過橢圓中心
(0,0)時,AB取最大值;此時,t=0,由
和
聯(lián)立解得:
所以AB的最大值是
。
解法2;由
和
聯(lián)立消去y得;
設
,
。有弦長公式得
。
時,
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
若橢圓
的左右焦點分別為
,線段
被拋物線
的焦點
內(nèi)分成了
的兩段.
(1)求橢圓的離心率;
(2)過點
的直線
交橢圓于不同兩點
、
,且
,當
的面積最大時,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,橢圓的中心在坐標原點,長軸端點為A,B,右焦點為F,且
.
(I) 求橢圓的標準方程;
(II)過橢圓的右焦點F作直線
,直線l
1與橢圓分別交于點M,N,直線l
2與橢圓分別交于點P,Q,且
,求四邊形MPNQ的面積S的最小值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知地球運行的軌道是橢圓,太陽在這個橢圓的一個焦點上,這個橢圓的長半軸長約為
km,半焦距約為
km,則地球到太陽的最大距離是
km。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
橢圓
的一個焦點是(0,2),那么
( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題12分) 已知拋物線
,頂點為O,動直線
與拋物
線
交于
、
兩點
(I)求證:
是一個與
無關(guān)的常數(shù);
(II)求滿足
的點
的軌跡方程。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
橢圓
的兩焦點之間的距離為 ( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
.已知橢圓
的兩個焦點為
、
,且
,弦AB過點
,則△
的周長為( )
A.10 | B.20 | C.2 | D. |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
若點F
1,F(xiàn)
2為橢圓
的焦點,P為橢圓上的點,當
的面積為1時,
的值是( )
查看答案和解析>>