20.函數(shù)f(x)=xex的最小值是-$\frac{1}{e}$.

分析 求導(dǎo)函數(shù),確定函數(shù)的單調(diào)性,即可求得函數(shù)的最小值.

解答 解:求導(dǎo)函數(shù),可得y′=ex+xex,令y′=0可得x=-1
令y′>0,可得x>-1,令y′<0,可得x<-1
∴函數(shù)在(-∞,-1)上單調(diào)減,在(-1,+∞)上單調(diào)增
∴x=-1時(shí),函數(shù)y=xex取得最小值,最小值是-$\frac{1}{e}$,
故答案為:-$\frac{1}{e}$.

點(diǎn)評 本題考查導(dǎo)數(shù)知識的運(yùn)用,考查函數(shù)的單調(diào)性與最值,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若角α滿足sinα+2cosα=0,則sin2α的值等于-$\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,AD∥BC,∠ADC=90°,Q為AD的中點(diǎn),M是棱PC的中點(diǎn),PA=PD=PC,BC=$\frac{1}{2}$AD=2,CD=4
(1)求證:直線PA∥平面QMB;
(2)若二面角P-AD-C為60°,求直線PB與平面QMB所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.如圖所示,△A′O′B′表示水平放置△AOB的直觀圖,B′在x′軸上,A′O′和x′軸垂直,且A′O′=8,則△AOB的邊OB上的高為16$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.拋物線y=-3x2的準(zhǔn)線方程是(  )
A.$\frac{3}{4}$B.$y=-\frac{3}{4}$C.$y=\frac{1}{12}$D.$y=-\frac{1}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,四棱錐P-ABCD的底面ABCD是正方形,分E,F(xiàn),G別為PD,AB,CD的中點(diǎn),PD⊥平面ABCD
(1)證明AC⊥PB
(2)證明:平面PBC∥平面EFG.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.下列4個(gè)命題中假命題的是①②④(寫上對應(yīng)的程序號)
①若p∨q為真命題,p∧q為假命題,則q為假命題
②命題“如果$\sqrt{x-1}$=2,則(x+1)(x-5)=0”的否命題是真命題
③“方程x2+x+m=0有實(shí)數(shù)根”是“m<$\frac{1}{4}$”的必要不充分條件
④命題p:?x∈R,x+$\frac{1}{x}$<2的否定為¬p:?x∉R,x+$\frac{1}{x}$≥2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知{an}為等差數(shù)列,其前n項(xiàng)和為Sn,若a3+2a7+3a15-a17=3,則S17=$\frac{51}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知拋物線C:y2=4x與直線y=k(x+1)(k>0)相交于A,B兩點(diǎn),F(xiàn)為C的焦點(diǎn),若|FA|=2|FB|,則k=$\frac{2\sqrt{2}}{3}$.

查看答案和解析>>

同步練習(xí)冊答案