如圖,橢圓的方程為數(shù)學公式,其右焦點為F,把橢圓的長軸分成6等分,過每個等分點作x軸的垂線交橢圓上半部于點P1,P2,P3,P4,P5五個點,且|P1F|+|P2F|+|P3F|+|P4F|+|P5F|=5數(shù)學公式
(1)求橢圓的方程;
(2)設(shè)直線l過F點(l不垂直坐標軸),且與橢圓交于A、B兩點,線段AB的垂直平分線交x軸于點M(m,0),試求m的取值范圍.

解:(1)由題意,知P1與P5,P2與P3分別關(guān)于y軸對稱
設(shè)橢圓的左焦點為F1,則|P1F|+|P5F|=|P1F|+|P1F1|=2a,同時|P2F|+|P3F|=2a而|P3F|=a
∴|P1F|+|P2F|+|P3F|+|P4F|+|P5F|=5a=5
∴a=
∴橢圓的方程為;
(2)由題意,F(xiàn)(1,0),設(shè)l的方程為y=k(x-1)(k≠0),代入橢圓方程
消元整理,得(1+2k2)x2-4k2x+2k2-2=0
設(shè)A(x1,y1),B(x2,y2),AB的中點為(x0,y0),

∴線段AB的垂直平分線方程為y-y0=-(x-x0
令y=0,得m=x0+ky0===
由于,∴
∴0<m<
分析:(1)由題意,知P1與P5,P2與P3分別關(guān)于y軸對稱,設(shè)橢圓的左焦點為F1,從而|P1F|+|P5F|=|P1F|+|P1F1|=2a,|P2F|+|P3F|=2a,|P3F|=a,利用|P1F|+|P2F|+|P3F|+|P4F|+|P5F|=5a=5,即可求得橢圓的方程;
(2)設(shè)l的方程為y=k(x-1)(k≠0),代入橢圓方程,利用韋達定理,確定AB的中點的坐標,求出線段AB的垂直平分線方程,表示出m,即可確定m的取值范圍.
點評:本題考查橢圓的標準方程,考查橢圓的對稱性,考查韋達定理的運用,求出線段AB的垂直平分線方程是關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

如圖,橢圓的方程為
x2
a2
+
2y2
a2
=1(a>0)
,其右焦點為F,把橢圓的長軸分成6等分,過每個等分點作x軸的垂線交橢圓上半部于點P1,P2,P3,P4,P5五個點,且|P1F|+|P2F|+|P3F|+|P4F|+|P5F|=5
2

(1)求橢圓的方程;
(2)設(shè)直線l過F點(l不垂直坐標軸),且與橢圓交于A、B兩點,線段AB的垂直平分線交x軸于點M(m,0),試求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年山東省聊城市高三上學期期末考試數(shù)學 題型:解答題

( 12分)如圖,橢圓的方程為,其右焦點為F,把橢圓的長軸分成6等分,過每個等分點作x軸的垂線交橢圓上半部于點P1,P2,P3,P4,P5五個點,且|P1F|+|P2F|+|P3F|+|P4F|+|P5F|=5.

 

 

(1)求橢圓的方程;

(2)設(shè)直線lF點(l不垂直坐標軸),且與橢圓交于A、B兩點,線段AB的垂直平分線交x軸于點M(m,0),試求m的取值范圍.

 

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,橢圓的方程為(a>0),其右焦點為F,把橢圓的長軸分成6等份,過每個分點作x軸的垂線交橢圓上半部于點P1、P2、P3、P4、P5五個點,且|P1F|+|P2F|+|P3F|+|P4F|+|P5F|=.

(1)求橢圓的方程;

(2)設(shè)直線l過F點(l不垂直坐標軸),且與橢圓交于A、B兩點,線段AB的垂直平分線交x軸于點M(m,0),試求m的取值范圍.

(文)某廠家擬在2006年舉行促銷活動,經(jīng)調(diào)查測算,該產(chǎn)品的年銷售量(即該廠的年產(chǎn)量)x萬件與年促銷費用m萬元(m≥0)滿足x=3(k為常數(shù)),如果不搞促銷活動,則該產(chǎn)品的年銷售量只能是1萬件.已知2006年生產(chǎn)該產(chǎn)品的固定投入為8萬元,每生產(chǎn)1萬件該產(chǎn)品需要再投入16萬元,廠家將每件產(chǎn)品的銷售價格定為每件產(chǎn)品年平均成本的1.5倍(產(chǎn)品成本包括固定投入和再投入兩部分資金,不包括促銷費用).

(1)將2006年該產(chǎn)品的利潤y萬元表示為年促銷費用m萬元的函數(shù);

(2)該廠家2006年的促銷費用投入多少萬元時,廠家的利潤最大?

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年山東省聊城市五校聯(lián)考高三(上)期末數(shù)學試卷(解析版) 題型:解答題

如圖,橢圓的方程為,其右焦點為F,把橢圓的長軸分成6等分,過每個等分點作x軸的垂線交橢圓上半部于點P1,P2,P3,P4,P5五個點,且|P1F|+|P2F|+|P3F|+|P4F|+|P5F|=5
(1)求橢圓的方程;
(2)設(shè)直線l過F點(l不垂直坐標軸),且與橢圓交于A、B兩點,線段AB的垂直平分線交x軸于點M(m,0),試求m的取值范圍.

查看答案和解析>>

同步練習冊答案