【題目】已知函數(shù)在上單調(diào)遞減,且滿足, (Ⅰ) 求的取值范圍;(Ⅱ)設,求在上的最大值和最小值
【答案】:(Ⅰ)
(Ⅱ)(i)當時,在上取得最小值 ,在上取得最大值
當 時,在 取得最大值 ,在 取得最小值
當 時, 在 取得最小值 在 取得最大值
當 時,在取得最小值
當 時, 在取得最小值
【解析】:(Ⅰ)由,得
則 ,依題意須對于任意 ,有 當時,因為二次函數(shù) 的圖像開口向上,而 ,所以須 ,即
當 時,對任意 有 ,符合條件;
當時,對于任意 ,,符合條件;
當 時,因, 不符合條件,故的取值范圍為
(Ⅱ)因
(i)當時, ,在上取得最小值 ,在上取得最大值
(ii)當 時,對于任意 有 ,在 取得最大值 ,在 取得最小值
(iii)當時,由 得
則當 時,在取得最小值
當 時, 在取得最小值
科目:高中數(shù)學 來源: 題型:
【題目】某闖關游戲共有兩關,游戲規(guī)則:先闖第一關,當?shù)谝魂P闖過后,才能進入第二關,兩關都闖過,則闖關成功,且每關各有兩次闖關機會.已知闖關者甲第一關每次闖過的概率均為,第二關每次闖過的概率均為.假設他不放棄每次闖關機會,且每次闖關互不影響.
(1)求甲恰好闖關3次才闖關成功的概率;
(2)記甲闖關的次數(shù)為,求隨機變量的分布列和期望.。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P—ABCD中,PA⊥平面ABCD,∠ABC=∠BAD=90°,AD=AP=4,AB=BC=2,N為AD的中點.
(1)求異面直線PB與CD所成角的余弦值;
(2)點M在線段PC上且滿足,直線MN與平面PBC所成角的正弦值為,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)當時,求在點處的切線方程;
(Ⅱ)若,求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)若對任意的,在上恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知三棱柱ABC﹣A1B1C1的側棱與底面邊長都相等,A1在底面ABC內(nèi)的射影為△ABC的中心,則AC1與底面ABC所成角的余弦值等于( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】過點的橢圓的離心率為,橢圓與軸交于兩點、,過點的直線與橢圓交于另一點,并與軸交于點,直線與直線交于點.
(1)求該橢圓的標準方程;
(2)當點異于點時,求證:為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2018年9月,臺風“山竹”在我國多個省市登陸,造成直接經(jīng)濟損失達52億元.某青年志愿者組織調(diào)查了某地區(qū)的50個農(nóng)戶在該次臺風中造成的直接經(jīng)濟損失,將收集的數(shù)據(jù)分成五組:,,,,(單位:元),得到如圖所示的頻率分布直方圖.
(1)試根據(jù)頻率分布直方圖估計該地區(qū)每個農(nóng)戶的平均損失(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代表);
(2)臺風后該青年志愿者與當?shù)卣蛏鐣l(fā)出倡議,為該地區(qū)的農(nóng)戶捐款幫扶,現(xiàn)從這50戶并且損失超過4000元的農(nóng)戶中隨機抽取2戶進行重點幫扶,設抽出損失超過8000元的農(nóng)戶數(shù)為,求的分布列和數(shù)學期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com