函數(shù)y=f(x)定義在區(qū)間[0,2]上且單調(diào)遞減,則使得f(1-m)<f(m)成立的實(shí)數(shù)m的取值范圍為( 。
分析:根據(jù)已知中函數(shù)y=f(x)在區(qū)間[0,2]上單調(diào)遞減,且f(1-m)<f(m)可得不等式組0≤1-m<m≤2,解不等式組,可得答案
解答:解:∵函數(shù)y=f(x)在區(qū)間[0,2]上單調(diào)遞減,
若f(1-m)<f(m)
則0≤1-m<m≤2
解得0≤m<
1
2

故選B
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是函數(shù)單調(diào)性的性質(zhì),其中根據(jù)已知條件,將問(wèn)題轉(zhuǎn)化為求不等式組0≤1-m<m≤2的解集,是解答的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)y=f(x)定義在R上,對(duì)于任意實(shí)數(shù)m,n,恒有f(m+n)=f(m)•f(n),且當(dāng)x>0時(shí),0<f(x)<1
(1)求證:f(0)=1且當(dāng)x<0時(shí),f(x)>1
(2)求證:f(x)在R上是減函數(shù);
(3)設(shè)集合A=(x,y)|f(-x2+6x-1)•f(y)=1,B=(x,y)|y=a,
且A∩B=∅,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

7、設(shè)函數(shù)y=f(x)定義在實(shí)數(shù)集上,則函數(shù)y=f(x-1)與y=f(1-x)的圖象關(guān)于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=f(x)定義在R上單調(diào)遞減且f(0)≠0,對(duì)任意實(shí)數(shù)m、n,恒有f(m+n)=f(m)•f(n),集合A={(x,y)|f(x2)•f(y2)>f(1)},B={(x,y)|f(ax-y+2)=1,a∈R},若A∩B=φ,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)y=f(x)定義在R上,對(duì)于任意實(shí)數(shù)m,n,恒有f(m+n)=f(m)•f(n)且當(dāng)x>0時(shí),0<f(x)<1
(1)求證:f(0)=1 且當(dāng)x<0時(shí),f(x)>1
(2)求證:f(x)在R上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

奇函數(shù)y=f(x)定義在[-1,1]上,且是減函數(shù),若f(1-a)+f(1-2a)>0,則實(shí)數(shù)a的取值范圍是
2
3
<a≤1
2
3
<a≤1

查看答案和解析>>

同步練習(xí)冊(cè)答案