已知a為正實(shí)數(shù),n為自然數(shù),拋物線與x軸正半軸相交于點(diǎn)A,設(shè)f(n)為該拋物線在點(diǎn)A處的切線在y軸上的截距。
(1)用a和n表示f(n);
(2)求對(duì)所有n都有成立的a的最小值;
(3)當(dāng)0<a<1時(shí),比較的大小,并說(shuō)明理由
解:(1)∵拋物線與x軸正半軸相交于點(diǎn)A,
∴A(
對(duì)求導(dǎo)得y′=-2x
∴拋物線在點(diǎn)A處的切線方程為,

∵f(n)為該拋物線在點(diǎn)A處的切線在y軸上的截距,
∴f(n)=an;
(2)由(1)知f(n)=an,則成立的充要條件是an≥2n3+1
即知,an≥2n3+1對(duì)所有n成立,特別的,取n=2得到a≥
當(dāng)a=,n≥3時(shí),an>4n=(1+3)n≥1+
=1+2n3+>2n3+1
當(dāng)n=0,1,2時(shí),
∴a=時(shí),對(duì)所有n都有成立
∴a的最小值為;
(3)由(1)知f(k)=ak,下面證明:
首先證明:當(dāng)0<x<1時(shí),
設(shè)函數(shù)g(x)=x(x2-x)+1,0<x<1,
則g′(x)=x(x-
當(dāng)0<x<時(shí),g′(x)<0;
當(dāng)時(shí),g′(x)>0
故函數(shù)g(x)在區(qū)間(0,1)上的最小值g(x)min=g()=0
∴當(dāng)0<x<1時(shí),g(x)≥0,

由0<a<1知0<ak<1,因此
從而=
==。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•四川)已知a為正實(shí)數(shù),n為自然數(shù),拋物線y=-x2+
an
2
與x軸正半軸相交于點(diǎn)A,設(shè)f(n)為該拋物線在點(diǎn)A處的切線在y軸上的截距.
(Ⅰ)用a和n表示f(n);
(Ⅱ)求對(duì)所有n都有
f(n)-1
f(n)+1
n
n+1
成立的a的最小值;
(Ⅲ)當(dāng)0<a<1時(shí),比較
1
f(1)-f(2)
+
1
f(2)-f(4)
+…+
1
f(n)-f(2n)
6•
f(1)-f(n+1)
f(0)-f(1)
的大小,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•四川)已知a為正實(shí)數(shù),n為自然數(shù),拋物線y=-x2+
an
2
與x軸正半軸相交于點(diǎn)A,設(shè)f(n)為該拋物線在點(diǎn)A處的切線在y軸上的截距.
(Ⅰ)用a和n表示f(n);
(Ⅱ)求對(duì)所有n都有
f(n)-1
f(n)+1
n3
n3+1
成立的a的最小值;
(Ⅲ)當(dāng)0<a<1時(shí),比較
n
k=1
1
f(k)-f(2k)
27
4
f(1)-f(n)
f(0)-f(1)
的大小,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年四川省達(dá)州市萬(wàn)源三中高考數(shù)學(xué)模擬試卷3(理科)(解析版) 題型:解答題

已知a為正實(shí)數(shù),n為自然數(shù),拋物線與x軸正半軸相交于點(diǎn)A,設(shè)f(n)為該拋物線在點(diǎn)A處的切線在y軸上的截距.
(Ⅰ)用a和n表示f(n);
(Ⅱ)求對(duì)所有n都有成立的a的最小值;
(Ⅲ)當(dāng)0<a<1時(shí),比較的大小,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年四川省高考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知a為正實(shí)數(shù),n為自然數(shù),拋物線與x軸正半軸相交于點(diǎn)A,設(shè)f(n)為該拋物線在點(diǎn)A處的切線在y軸上的截距.
(Ⅰ)用a和n表示f(n);
(Ⅱ)求對(duì)所有n都有成立的a的最小值;
(Ⅲ)當(dāng)0<a<1時(shí),比較的大小,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案