【題目】若函數(shù)f(x)=kx2+(k﹣1)x+2是偶函數(shù);則k的值為 .
【答案】2
【解析】解:函數(shù)f(x)=kx2+(k﹣1)x+2是偶函數(shù);
可得f(﹣x)=f(x).
即:kx2+(k﹣1)(﹣x)+2=kx2+(k﹣1)x+2.
解得k=1.
所以答案是:1.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解函數(shù)的奇偶性的相關(guān)知識(shí),掌握偶函數(shù)的圖象關(guān)于y軸對(duì)稱;奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱,以及對(duì)函數(shù)奇偶性的性質(zhì)的理解,了解在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個(gè)奇函數(shù)的乘除認(rèn)為奇函數(shù);偶數(shù)個(gè)奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復(fù)合函數(shù)的奇偶性:一個(gè)為偶就為偶,兩個(gè)為奇才為奇.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)y=f(x)在R上單調(diào)遞減且f(2m)>f(1+m),則實(shí)數(shù)m的取值范圍是( )
A.(﹣∞,﹣1)
B.(﹣∞,1)
C.(﹣1,+∞)
D.(1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題p:x∈R,x2﹣x+1≥0.命題q:若a2<b2 , 則a<b,下列命題為真命題的是( )
A.p∧q
B.p∧¬q
C.¬p∧q
D.¬p∧¬q
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在凸多邊形當(dāng)中顯然有F+V﹣E=1(其中F:面數(shù),V:頂點(diǎn)數(shù),E:邊數(shù))類比到空間凸多面體中有相應(yīng)的結(jié)論為; .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】命題“x0∈(0,+∞),lnx0=x0﹣1”的否定是( )
A.x0∈(0,+∞),lnx0≠x0﹣1
B.x0(0,+∞),lnx0=x0﹣1
C.x∈(0,+∞),lnx≠x﹣1
D.x(0,+∞),lnx=x﹣1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)y=f(x+1)是偶函數(shù),則下列說(shuō)法正確的序號(hào)是
(1)y=f(x)圖象關(guān)于直線x=1對(duì)稱
(2)y=f(x+1)圖象關(guān)于y軸對(duì)稱
(3)必有f(1+x)=f(﹣1﹣x)成立
(4)必有f(1+x)=f(1﹣x)成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】把座位編號(hào)為1,2,3,4,5,6的6張電影票分給甲、乙、丙、丁四個(gè)人,每人至少分一張,至多分兩張,且分得的兩張票必須是連號(hào),那么不同分法種數(shù)為( )
A.240
B.144
C.196
D.288
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中,正確的有幾個(gè)( ) ①矩形的水平放置圖是平行四邊形;②三角形的水平放置圖是三角形;
③正方形的水平放置圖是菱形; ④圓的水平放置圖是圓.
A.1
B.2
C.3
D.4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com