【題目】已知函數(shù).

1)求上的最小值;

2)若存在兩個不同的實數(shù),使得,求證:.

【答案】(1);(2)證明見解析.

【解析】

試題分析:(1)對進行求導,得到其單調(diào)性,上單調(diào)遞減,在上單調(diào)遞增,對導函數(shù)的零點與所給區(qū)間的關(guān)系進行討論,即分為,三種情形,根據(jù)單調(diào)性求得最值;(2)令,易得時,,,故,根據(jù)單調(diào)性得證.

試題解析:(1)根據(jù)題意,得,時,;當.

上單調(diào)遞減,在上單調(diào)遞增.

,即時,上單調(diào)遞減,;

,即時,;

時,上單調(diào)遞增,.

所以.

2)構(gòu)造函數(shù),

.

因為,所以,函數(shù)單調(diào)遞增,

所以,

所以在區(qū)間,所以在區(qū)間單調(diào)遞增,

所以,所以當時,.

根據(jù)(1)中的性質(zhì),若存在兩個不同的實數(shù),使得,不妨設,則一定有,,當時,,

所以

因為上單調(diào)遞增,所以,.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】若對于定義在上的連續(xù)函數(shù),存在常數(shù)),使得對任意的實數(shù)成立,則稱是回旋函數(shù),且階數(shù)為.

(1)試判斷函數(shù)是否是一個階數(shù)為1的回旋函數(shù),并說明理由;

(2)已知是回旋函數(shù),求實數(shù)的值;

(3)若回旋函數(shù))在恰有100個零點,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費,需了解年宣傳費(單位:千元)對年利潤(單位:萬元)的影響,對近5年的宣傳費和年利潤)進行了統(tǒng)計,列出了下表:

(單位:千元)

2

4

7

17

30

(單位:萬元)

1

2

3

4

5

員工小王和小李分別提供了不同的方案.

(1)小王準備用線性回歸模型擬合的關(guān)系,請你幫助建立關(guān)于的線性回歸方程;(系數(shù)精確到0.01)

(2)小李決定選擇對數(shù)回歸模型擬合的關(guān)系得到了回歸方程,并提供了相關(guān)指數(shù).請用相關(guān)指數(shù)說明選擇哪個模型更合適,并預測年宣傳費為4萬元的年利潤.(精確到0.01)(小王也提供了他的分析分析數(shù)據(jù)

參考公式:相關(guān)指數(shù)

回歸方程中斜率和截距的最小二乘估計公式分別為

,參考數(shù)據(jù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

)當a=﹣2時,求函數(shù)f(x)的單調(diào)區(qū)間;

)若g(x)= +1+∞)上是單調(diào)函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐PABCD中底面ABCD是正方形,側(cè)棱PD垂直于底面ABCD,PDDC,點E是PC的中點

(Ⅰ)求證:PA∥平面EBD;

)求二面角EBDP的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠每日生產(chǎn)某種產(chǎn)品噸,當日生產(chǎn)的產(chǎn)品當日銷售完畢,產(chǎn)品價格隨產(chǎn)品產(chǎn)量而變化,當時,每日的銷售額(單位:萬元)與當日的產(chǎn)量滿足,當日產(chǎn)量超過噸時,銷售額只能保持日產(chǎn)量噸時的狀況.已知日產(chǎn)量為噸時銷售額為萬元,日產(chǎn)量為噸時銷售額為萬元.

1)把每日銷售額表示為日產(chǎn)量的函數(shù);

2)若每日的生產(chǎn)成本(單位:萬元),當日產(chǎn)量為多少噸時,每日的利潤可以達到最大?并求出最大值.(注:計算時取

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)求函數(shù)在點處的切線方程;

(2)求函數(shù)的單調(diào)區(qū)間;

(3)若存在,使得是自然對數(shù)的底數(shù)),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-5:不等式選講

已知函數(shù).

I)求證:恒成立;

II)若存在實數(shù),使得,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列4個命題:

①為了了解800名學生對學校某項教改試驗的意見,打算從中抽取一個容量為40的樣本,考慮用系統(tǒng)抽樣,則分段的間隔為40;

②四邊形為長方形,,中點,在長方形內(nèi)隨機取一點,取得的點到的距離大于1的概率為;

③把函數(shù)的圖象向右平移個單位,可得到的圖象;

④已知回歸直線的斜率的估計值為,樣本點的中心為,則回歸直線方程為.

其中正確的命題有__________.(填上所有正確命題的編號)

查看答案和解析>>

同步練習冊答案