圓錐曲線
x2+y2+6x-2y+10
-|x-y+3|=0
的離心率是
2
2
分析:把給出的曲線方程變形,整理后利用其幾何意義得到圓錐曲線為雙曲線,同時得到離心率.
解答:解:由
x2+y2+6x-2y+10
-|x-y+3|=0
,得
(x+3)2+(y-1)2
=|x-y+3|

(x+3)2+(y-1)2
=
2
|x-y+3|
2

∴動點(x,y)到(-3,1)的距離與它到直線x-y+3=0的距離的比為
2

∴圓錐曲線
x2+y2+6x-2y+10
-|x-y+3|=0
是雙曲線,離心率為
2

故答案為:
2
點評:本題考查了曲線與方程,考查了雙曲線的定義,方法再于靈活變形,是有一定難度題目.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點P是圓C:x2+y2=1外一點,設(shè)k1,k2分別是過點P的圓C兩條切線的斜率.
(1)若點P坐標(biāo)為(2,2),求k1•k2的值;
(2)若k1•k2=-λ(λ≠-1,0),求點P的軌跡M的方程,并指出曲線M所在圓錐曲線的類型.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列是有關(guān)直線與圓錐曲線的命題:
①過點(2,4)作直線與拋物線y2=8x有且只有一個公共點,這樣的直線有2條;
②過拋物線y2=4x的焦點作一條直線與拋物線相交于A,B兩點,它們的橫坐標(biāo)之和等于5,則這樣的直線有且僅有兩條;
③過點(3,1)作直線與雙曲線
x2
4
-y2=1
有且只有一個公共點,這樣的直線有3條;
④過雙曲線x2-
y2
2
=1
的右焦點作直線l交雙曲線于A,B兩點,若|AB|=4,則滿足條件的直線l有3條;
⑤已知雙曲線x2-
y2
2
=1
和點A(1,1),過點A能作一條直線l,使它與雙曲線交于P,Q兩點,且點A恰為線段PQ的中點.
其中說法正確的序號有
①②④
①②④
.(請寫出所有正確的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若中心在原點,以坐標(biāo)軸為對稱軸的圓錐曲線C,離心率為
2
,且過點(2,3),則曲線C的方程為
y2-x2=5
y2-x2=5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

與圓類似,連接圓錐曲線上兩點的線段叫做圓錐曲線的弦.過有心曲線(橢圓、雙曲線)中心(即對稱中心)的弦叫做有心曲線的直徑.對圓x2+y2=r2,由直徑所對的圓周角是直角出發(fā),可得:若AB是圓O的直徑,M是圓O上異于A、B的一點,且AM,BM均與坐標(biāo)軸不平行,則kAM•kBM=-1.類比到橢圓
x2
a2
+
y2
b2
=1
,類似結(jié)論是
若AB是橢圓
x2
a2
+
y2
b2
=1
的直徑,M是橢圓上異于A、B的一點,且AM、BM均與坐標(biāo)軸不平行,則kAM•kBM=-
b2
a2
若AB是橢圓
x2
a2
+
y2
b2
=1
的直徑,M是橢圓上異于A、B的一點,且AM、BM均與坐標(biāo)軸不平行,則kAM•kBM=-
b2
a2

查看答案和解析>>

同步練習(xí)冊答案