【題目】已知函數(shù)f(x)= sin(2x+ ),給出下列四個(gè)命題:
①函數(shù)f(x)在區(qū)間[ , ]上是減函數(shù);
②直線x= 是f(x)的圖象的一條對(duì)稱軸;
③函數(shù)f(x)的圖象可以由函數(shù)y= sin2x的圖象向左平移 而得到;
④函數(shù)f(x)的圖象的一個(gè)對(duì)稱中心是( ,0).
其中正確的個(gè)數(shù)是( )
A.1
B.2
C.3
D.4
【答案】C
【解析】解:對(duì)于函數(shù)f(x)= sin(2x+ ):
當(dāng)x∈[ , ]時(shí),2x+ ∈[ , ],故函數(shù)f(x)在區(qū)間[ , ]上是減函數(shù),
故①正確.
令x= ,求得f(x)= ,為函數(shù)的最大值,故直線x= 是f(x)的圖象的一條對(duì)稱軸;
故②正確.
把函數(shù)y= sin2x的圖象向左平移 ,得到y(tǒng)= sin2(x+ )= cos2x的圖象,
故③錯(cuò)誤.
x= ,求得f(x)=0,故函數(shù)f(x)的圖象的一個(gè)對(duì)稱中心是( ,0),
故④正確,
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)事件表示“關(guān)于的方程有實(shí)數(shù)根”.
(1)若、,求事件發(fā)生的概率;
(2)若、,求事件發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(且為常數(shù)).
(1)當(dāng)時(shí),討論函數(shù)在的單調(diào)性;
(2)設(shè)可求導(dǎo)數(shù),且它的導(dǎo)函數(shù)仍可求導(dǎo)數(shù),則再次求導(dǎo)所得函數(shù)稱為原函數(shù)的二階函數(shù),記為,利用二階導(dǎo)函數(shù)可以判斷一個(gè)函數(shù)的凹凸性.一個(gè)二階可導(dǎo)的函數(shù)在區(qū)間上是凸函數(shù)的充要條件是這個(gè)函數(shù)在的二階導(dǎo)函數(shù)非負(fù).
若在不是凸函數(shù),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分別是AC、AD上的動(dòng)點(diǎn),且
(1)求證:不論為何值,總有平面BEF⊥平面ABC;
(2)當(dāng)λ為何值時(shí),平面BEF⊥平面ACD ?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn),動(dòng)點(diǎn), 分別在軸, 軸上運(yùn)動(dòng), , 為平面上一點(diǎn), ,過點(diǎn)作平行于軸交的延長(zhǎng)線于點(diǎn).
(Ⅰ)求點(diǎn)的軌跡曲線的方程;
(Ⅱ)過點(diǎn)作軸的垂線,平行于軸的兩條直線, 分別交曲線于, 兩點(diǎn)(直線不過),交于, 兩點(diǎn).若線段中點(diǎn)的軌跡方程為,求與的面積之比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某家電公司銷售部門共有200位銷售員,每位部門對(duì)每位銷售員都有1400萬元的年度銷售任務(wù),已知這200位銷售員去年完成銷售額都在區(qū)間(單位:百萬元)內(nèi),現(xiàn)將其分成5組,第1組,第2組,第3組,第4組,第5組對(duì)應(yīng)的區(qū)間分別為, , , , ,繪制出頻率分布直方圖.
(1)求的值,并計(jì)算完成年度任務(wù)的人數(shù);
(2)用分層抽樣從這200位銷售員中抽取容量為25的樣本,求這5組分別應(yīng)抽取的人數(shù);
(3)現(xiàn)從(2)中完成年度任務(wù)的銷售員中隨機(jī)選取2位,獎(jiǎng)勵(lì)海南三亞三日游,求獲得此獎(jiǎng)勵(lì)的2位銷售員在同一組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=sin2(π+x)﹣cos(2π﹣x)+a
(1)求f(x)的值域
(2)若f(x)在(0, )內(nèi)有零點(diǎn),求a的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2.∠ABC=∠DBC=120°,E、F分別為AC、DC的中點(diǎn).
(1)求證:EF⊥BC;
(2)求二面角E﹣BF﹣C的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2sinx(sinx+ cosx)﹣1(其中x∈R),求:
(1)函數(shù)f(x)的最小正周期;
(2)函數(shù)f(x)的單調(diào)減區(qū)間;
(3)函數(shù)f(x)圖象的對(duì)稱軸和對(duì)稱中心.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com