【題目】已知函數(shù).
(1)討論的單調(diào)性;
(2)當時,若方程有兩個相異實根,且,證明: .
【答案】(1)答案見解析;(2)證明見解析.
【解析】試題分析:(1)對原函數(shù)求導,根據(jù)導函數(shù)的正負得到函數(shù)的單調(diào)區(qū)間。(2)由條件知的兩個相異實根分別為,構(gòu)造函數(shù),研究函數(shù)的單調(diào)性,得函數(shù)遞減,由題意可知,故,所以,這樣就將化到了同一個單調(diào)區(qū)間上去,直接研究函數(shù)和0的關(guān)系即可,最終根據(jù)的單調(diào)性可以得到結(jié)果。
解析:(1)因為,
函數(shù)的定義域為,
因為,當,即時, 對恒成立
所以在上是增函數(shù),
當,即時,由得或,
則在, 上遞增
在上遞減;
(2)設(shè)的兩個相異實根分別為,滿足,
且,
令的導函數(shù),
所以在上遞減,由題意可知,
故,所以,令,
令,
則,
當時, ,所以是減函數(shù),
所以,
所以當時, ,
因為, 在上單調(diào)遞增,
所以,故,
綜上所述, .
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,已知a=2,b=3,cosC= .
(1)求△ABC的面積;
(2)求sin(C﹣A)的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若為的極值點,求實數(shù)的值;
(2)若在上為增函數(shù),求實數(shù)的取值范圍;
(2)若使方程有實根,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出以下問題:
①求面積為1的正三角形的周長;
②求鍵盤所輸入的三個數(shù)的算術(shù)平均數(shù);
③求鍵盤所輸入的兩個數(shù)的最小數(shù);
④求函數(shù)當自變量取時的函數(shù)值.
其中不需要用條件語句來描述算法的問題有( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,底面是梯形, , , , ,側(cè)面底面.
(1)求證:平面平面;
(2)若,且三棱錐的體積為,求側(cè)面的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,以原點為極點, 軸的正半軸為極軸,以相同的長度單位建立極坐標系,已知直線的極坐標方程為,曲線的極坐標方程為.
(1)設(shè)為參數(shù),若,求直線的參數(shù)方程;
(2)已知直線與曲線交于,設(shè),且,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C的方程為 ,點A、B分別為其左、右頂點,點F1、F2分別為其左、右焦點,以點A為圓心,AF1為半徑作圓A;以點B為圓心,OB為半徑作圓B;若直線 被圓A和圓B截得的弦長之比為 ;
(1)求橢圓C的離心率;
(2)己知a=7,問是否存在點P,使得過P點有無數(shù)條直線被圓A和圓B截得的弦長之比為 ;若存在,請求出所有的P點坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了了解甲、乙兩個工廠生產(chǎn)的輪胎的寬度是否達標,分別從兩廠隨機各選取了10個輪胎,將每個輪胎的寬度(單位:mm)記錄下來并繪制出如下的折線圖:
(1)分別計算甲、乙兩廠提供的10個輪胎寬度的平均值;
(2)輪胎的寬度在內(nèi),則稱這個輪胎是標準輪胎.試比較甲、乙兩廠分別提供的10個輪胎中所有標準輪胎寬度的方差的大小,根據(jù)兩廠的標準輪胎寬度的平均水平及其波動情況,判斷這兩個工廠哪個廠的輪胎相對更好?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com