題文已知函數(shù).
(1)求函數(shù)的單調(diào)遞減區(qū)間;
(2)若不等式對(duì)一切恒成立,求的取值范圍.

(1)(2)

解析試題分析:(1)由于,
當(dāng)時(shí),,令,可得.
當(dāng)時(shí), 單調(diào)遞增.
所以函數(shù)的單調(diào)遞減區(qū)間為.     4分
(2)設(shè),
當(dāng)時(shí), ,
,可得,即
,可得.
所以為函數(shù)的單調(diào)遞增區(qū)間, 為函數(shù)的單調(diào)遞減區(qū)間.
當(dāng)時(shí), ,可得為函數(shù)的單調(diào)遞減區(qū)間.
所以函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.
所以函數(shù),
要使不等式對(duì)一切恒成立,即對(duì)一切恒成立,
所以.                                                        …12分
考點(diǎn):本小題主要考查導(dǎo)數(shù)的計(jì)算,單調(diào)區(qū)間的求解以及恒成立問(wèn)題的解決。
點(diǎn)評(píng):求分段函數(shù)的單調(diào)區(qū)間時(shí),要注意分段討論求解,而恒成立問(wèn)題一般轉(zhuǎn)化為最值問(wèn)題求解,另外因?yàn)榇祟悊?wèn)題一般以解答題的形式出現(xiàn),所以一定要注意步驟完整.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知
(1)求使上是減函數(shù)的充要條件;
(2)求上的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)要使在區(qū)間(0,1)上單調(diào)遞增,試求a的取值范圍;
(2)若時(shí),圖象上任意一點(diǎn)處的切線的傾斜角為,試求當(dāng)時(shí),a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知時(shí)有極值0。
(1)求常數(shù) 的值;
(2)求的單調(diào)區(qū)間。
(3)方程在區(qū)間[-4,0]上有三個(gè)不同的實(shí)根時(shí)實(shí)數(shù)的范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù)=x+ax2+blnx,曲線y=過(guò)P(1,0),且在P點(diǎn)處的切斜線率為2.
(1)求a,b的值;
(2)證明:≤2x-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(Ⅰ)若曲線在點(diǎn)處的切線與直線平行,求出這條切線的方程;
(Ⅱ)若,討論函數(shù)的單調(diào)區(qū)間;
(Ⅲ)對(duì)任意的,恒有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)若的極值點(diǎn),求實(shí)數(shù)的值;
(2)當(dāng)時(shí),方程有實(shí)根,求實(shí)數(shù)的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(Ⅰ)若無(wú)極值點(diǎn),但其導(dǎo)函數(shù)有零點(diǎn),求的值;
(Ⅱ)若有兩個(gè)極值點(diǎn),求的取值范圍,并證明的極小值小于

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),
(1)
(2)是否存在實(shí)數(shù),使上的最小值為,若存在,求出的值;若不存在,說(shuō)明理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案