分析 an=3an-1+2(n≥2,n∈N*)⇒an+1=3(an-1+1),又a1+1=2,可確定數(shù)列{an+1}是以2為首項,3為公比的等比數(shù)列,從而可求數(shù)列{an}的通項公式.
解答 解:∵an=3an-1+2(n≥2,n∈N*),
∴an+1=3(an-1+1),
又a1+1=2,
∴數(shù)列{an+1}是以2為首項,3為公比的等比數(shù)列,
∴an+1=2×3n-1,
∴an=2×3n-1-1;
故答案為:2×3n-1-1.
點評 本題考查數(shù)列遞推式的應(yīng)用,確定數(shù)列{an+1}是以2為首項,3為公比的等比數(shù)列是關(guān)鍵,考查轉(zhuǎn)化思想與等比數(shù)列通項公式的應(yīng)用,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{5}{7}$ | C. | $\frac{2}{3}$ | D. | $\frac{7}{9}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 相離 | B. | 相切 | ||
C. | 直線與圓相交但不經(jīng)過圓心 | D. | 直線經(jīng)過圓心 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\frac{2}{3}$ | C. | $\frac{1}{2}$ | D. | 4 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com