設(shè)向量=,=,為銳角.
(1)若∥,求tanθ的值;
(2)若·=,求sin+cos的值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知=(cosα,sinα),=(cosβ,sinβ),與之間有關(guān)系|k+|=|-k|,其中k>0,(Ⅰ)用k表示;
(Ⅱ)求·的最小值,并求此時與的夾角的大小。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知向量,,函數(shù)
(1)求函數(shù)的解析式及其單調(diào)遞增區(qū)間;
(2)在中,角為鈍角,若,,.求的面積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知向量與共線,且有函數(shù)
(Ⅰ)求函數(shù)的周期與最大值;
(Ⅱ)已知銳角DABC的三個內(nèi)角分別是A、B、C,若有,邊,,求AC的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分)
已知, 是平面上一動點(diǎn), 到直線上的射影為點(diǎn),且滿足
(Ⅰ)求點(diǎn)的軌跡的方程;
(Ⅱ)過點(diǎn)作曲線的兩條弦, 設(shè)所在直線的斜率分別為, 當(dāng)變化且滿足時,證明直線恒過定點(diǎn),并求出該定點(diǎn)坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com