某種有獎(jiǎng)銷售的飲料,瓶蓋內(nèi)印有“獎(jiǎng)勵(lì)一瓶”或“謝謝購買”字樣,購買一瓶若其瓶蓋內(nèi)印有“獎(jiǎng)勵(lì)一瓶”字樣即為中獎(jiǎng),中獎(jiǎng)概率為.甲、乙、丙三位同學(xué)每人購買了一瓶該飲料.

(1)求甲中獎(jiǎng)且乙、丙都沒有中獎(jiǎng)的概率;

(2)求中獎(jiǎng)人數(shù)ξ的分布列及數(shù)學(xué)期望Eξ.

 

【答案】

(1)(2)

【解析】

試題分析:解:(1)設(shè)甲、乙、丙中獎(jiǎng)的事件分別為A、B、C,那么P(A)=P(B)=P(C)=,

P()=P(A)P()P()=

(2)ξ的可能值為0,1,2,3,

P(ξ=k)=(k=0,1,2,3)

所以中獎(jiǎng)人數(shù)ξ的分布列為

ξ

0

1

2

3

P

Eξ=0×+1×+2×+3×=

考點(diǎn):分布列和數(shù)學(xué)期望

點(diǎn)評(píng):解決的關(guān)鍵是根據(jù)獨(dú)立事件的概率的乘法公式,以及分布列的概念來求解,屬于基礎(chǔ)題。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某種有獎(jiǎng)銷售的飲料,瓶蓋內(nèi)印有“獎(jiǎng)勵(lì)一瓶”或“謝謝購買”字樣,購買一瓶若其瓶蓋內(nèi)印有“獎(jiǎng)勵(lì)一瓶”字樣即為中獎(jiǎng),中獎(jiǎng)概率為
16
.甲、乙、丙三位同學(xué)每人購買了一瓶該飲料.
(Ⅰ)求甲中獎(jiǎng)且乙、丙都沒有中獎(jiǎng)的概率;
(Ⅱ)求中獎(jiǎng)人數(shù)ξ的分布列及數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某種有獎(jiǎng)銷售的飲料,瓶蓋內(nèi)印有“獎(jiǎng)勵(lì)一瓶”或“謝謝購買”字樣,購買一瓶若其瓶蓋內(nèi)印有“獎(jiǎng)勵(lì)一瓶”字樣即為中獎(jiǎng),中獎(jiǎng)概率為
16
.甲、乙、丙三位同學(xué)每人購買了一瓶該飲料.
(Ⅰ)求三位同學(xué)都沒有中獎(jiǎng)的概率;
(Ⅱ)求三位同學(xué)中至少有兩位沒有中獎(jiǎng)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年貴州省遵義四中高二下學(xué)期期末考試文科數(shù)學(xué) 題型:解答題

(本小題滿分10分)某種有獎(jiǎng)銷售的飲料,瓶蓋內(nèi)印有“獎(jiǎng)勵(lì)一瓶”或“謝謝購買”字樣,購買一瓶若其瓶蓋內(nèi)印有“獎(jiǎng)勵(lì)一瓶”字樣即為中獎(jiǎng),中獎(jiǎng)概率為.甲、乙、丙三位同學(xué)每人購買了一瓶該飲料。
(Ⅰ)求三位同學(xué)都沒有中獎(jiǎng)的概率;
(Ⅱ)求三位同學(xué)中至少有兩位沒有中獎(jiǎng)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年貴州省高三上學(xué)期第一次月考數(shù)學(xué)卷 題型:解答題

某種有獎(jiǎng)銷售的飲料,瓶蓋內(nèi)印有“獎(jiǎng)勵(lì)一瓶”或“謝謝購買”字樣,購買一瓶若其瓶蓋內(nèi)印有“獎(jiǎng)勵(lì)一瓶”字樣即為中獎(jiǎng),中獎(jiǎng)概率為,甲、乙、丙三位同學(xué)每人購買了一瓶該飲料。

(1)求三位同學(xué)都沒有中獎(jiǎng)的概率;

(2)求三位同學(xué)中至少有兩位沒有中獎(jiǎng)的概率。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年河南省許昌市六校高二下學(xué)期期末考試(理科)數(shù)學(xué)卷 題型:解答題

(本小題滿分12分)

某種有獎(jiǎng)銷售的飲料,瓶蓋內(nèi)印有“獎(jiǎng)勵(lì)一瓶”或“謝謝購買”字樣,購買一瓶若其瓶蓋內(nèi)印有“獎(jiǎng)勵(lì)一瓶”字樣即為中獎(jiǎng),中獎(jiǎng)概率為.甲、乙、丙三位同學(xué)每人購買了一瓶該飲料.

(Ⅰ)求甲中獎(jiǎng)且乙、丙都沒有中獎(jiǎng)的概率;

(Ⅱ)求中獎(jiǎng)人數(shù)的分布列及數(shù)學(xué)期望.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案