某市一次全市高中男生身高統(tǒng)計調查數(shù)據(jù)顯示:全市100 000名男生的身高服從正態(tài)分布N(168,16).現(xiàn)從某學校高三年級男生中隨機抽取50名測量身高,測量發(fā)現(xiàn)被測學生身高全部介于160cm和184cm之間,將測量結果按如下方式分成6組:第一組[160,164],第二組[164,168],…,第6組[180,184],如圖是按上述分組方法得到的頻率分布直方圖.
(Ⅰ)試評估該校高三年級男生在全市高中男生中的平均身高狀況;
(Ⅱ)求這50名男生身高在172cm以上(含172cm)的人數(shù);
(Ⅲ)在這50名男生身高在172cm以上(含172cm)的人中任意抽取2人,該2人中身高排名(從高到低)在全市前130名的人數(shù)記為ξ,求ξ的數(shù)學期望.
參考數(shù)據(jù):
若ξ-N(μ+?2).則
P(μ-?<ξ≤μ+?)=0.6826,
P(μ-2?<ξ≤μ+2?))=0.9544,
P(μ-3?<ξ≤μ+3?)=0.9974.
分析:(I)高三男生的平均身高用組中值×頻率,即可得到結論;
(II)首先理解頻數(shù)分布直方圖橫縱軸表示的意義,橫軸表示身高,縱軸表示頻數(shù),即:每組中包含個體的個數(shù).我們可以依據(jù)頻數(shù)分布直方圖,了解數(shù)據(jù)的分布情況,知道每段所占的比例,從而求出求這50名男生身高在172cm以上(含172cm)的人數(shù).
(III)先根據(jù)正態(tài)分布的規(guī)律求出全市前130名的身高在180 cm以上,這50人中180 cm以上的有2人,確定ξ的可能取值,求出其概率,即可得到ξ的分布列與期望.
解答:解:(Ⅰ)由直方圖,經(jīng)過計算該校高三年級男生平均身高為
(162×
5
100
+166×
7
100
+170×
8
100
+174×
2
100
+178×
2
100
+182×
1
100
)×4=168.72,
高于全市的平均值168(或者:經(jīng)過計算該校高三年級男生平均身高為168.72,比較接近全市的平均值168).…(4分)
(Ⅱ)由頻率分布直方圖知,后三組頻率為(0.02+0.02+0.01)×4=0.2,人數(shù)為0.2×50=10,即這50名男生身高在172 cm以上(含172 cm)的人數(shù)為10人.…(6分)
(Ⅲ)∵P(168-3×4<ξ≤168+3×4)=0.9974,
∴P(ξ≥180)=
1-0.9974
2
=0.0013,0.0013×100 000=130.
所以,全市前130名的身高在180 cm以上,這50人中180 cm以上的有2人.
隨機變量ξ可取0,1,2,于是
P(ξ=0)=
C
2
8
C
2
10
=
28
45
,P(ξ=1)=
C
1
8
C
1
2
C
2
10
=
16
45
,P(ξ=2)=
C
2
2
C
2
10
=
1
45
,
∴Eξ=0×
28
45
+1×
16
45
+2×
1
45
=
2
5
.…(12分)
點評:此題主要考查了正態(tài)分布,考查隨機變量的定義及其分布列,并考查了利用分布列求其期望.正確理解頻數(shù)分布直方圖橫縱軸表示的意義,由頻數(shù)分布直方圖可以得到什么結論是學習中需要掌握的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2012-2013學年湖北省武漢市武昌區(qū)高三上學期期末調研測試理科數(shù)學試卷(解析版) 題型:解答題

(本小題滿分12分)

某市一次全市高中男生身高統(tǒng)計調查數(shù)據(jù)顯示:全市100 000名男生的身高服從正態(tài)分布N(168,16).現(xiàn)從某學校高三年級男生中隨機抽取50名測量身高,測量發(fā)現(xiàn)被測學生身高全部介于160 cm和184 cm之間,將測量結果按如下方式分成6組:第一組 [160,164],第二組[164,168],…,第6組[180,184],下圖是按上述分組方法得到的頻率分布直方圖.

(Ⅰ)試評估該校高三年級男生在全市高中男生中的平均身高狀況;

(Ⅱ)求這50名男生身高在172 cm以上(含172 cm)的人數(shù);

(Ⅲ)在這50名男生身高在172 cm以上(含172 cm)的人中任意抽取2人,該2人中身高排名(從高到低)在全市前130名的人數(shù)記為,求的數(shù)學期望.

參考數(shù)據(jù):

.則

=0.6826,

="0.9544,"

=0.9974.

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某市一次全市高中男生身高統(tǒng)計調查數(shù)據(jù)顯示:全市100 000名男生的身高服從正態(tài)分布N(168,16).現(xiàn)從某學校高三年級男生中隨機抽取50名測量身高,測量發(fā)現(xiàn)被測學生身高全部介于160cm和184cm之間,將測量結果按如下方式分成6組:第一組[160,164],第二組[164,168],…,第6組[180,184],如圖是按上述分組方法得到的頻率分布直方圖.
(Ⅰ)試評估該校高三年級男生在全市高中男生中的平均身高狀況;
(Ⅱ)求這50名男生身高在172cm以上(含172cm)的人數(shù);
(Ⅲ)在這50名男生身高在172cm以上(含172cm)的人中任意抽取2人,該2人中身高排名(從高到低)在全市前130名的人數(shù)記為ξ,求ξ的數(shù)學期望.
參考數(shù)據(jù):
若ξ-N(μ+?2).則
P(μ-?<ξ≤μ+?)=0.6826,
P(μ-2?<ξ≤μ+2?))=0.9544,
P(μ-3?<ξ≤μ+3?)=0.9974.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

    某市一次全市高中男生身高統(tǒng)計調查數(shù)據(jù)顯示:全市100 000名男生的身高服從正態(tài)分布N(168,16).現(xiàn)從某學校高三年級男生中隨機抽取50名測量身高,測量發(fā)現(xiàn)被測學生身高全部介于160 cm和184 cm之間,將測量結果按如下方式分成6組:第一組 [160,164],第二組[164,168],…,第6組[180,184],下圖是按上述分組方法得到的頻率分布直方圖.

    (Ⅰ)試評估該校高三年級男生在全市高中男生中的平均身高狀況;

    (Ⅱ)求這50名男生身高在172 cm以上(含172 cm)的人數(shù);

    (Ⅲ)在這50名男生身高在172 cm以上(含172 cm)的人中任意抽取2人,該2人中身高排名(從高到低)在全市前130名的人數(shù)記為,求的數(shù)學期望.

    參考數(shù)據(jù):

    若.則

    =0.6826,

    =0.9544,

    =0.9974.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年湖北省高三(上)期末數(shù)學試卷(理科)(解析版) 題型:解答題

某市一次全市高中男生身高統(tǒng)計調查數(shù)據(jù)顯示:全市100 000名男生的身高服從正態(tài)分布N(168,16).現(xiàn)從某學校高三年級男生中隨機抽取50名測量身高,測量發(fā)現(xiàn)被測學生身高全部介于160cm和184cm之間,將測量結果按如下方式分成6組:第一組[160,164],第二組[164,168],…,第6組[180,184],如圖是按上述分組方法得到的頻率分布直方圖.
(Ⅰ)試評估該校高三年級男生在全市高中男生中的平均身高狀況;
(Ⅱ)求這50名男生身高在172cm以上(含172cm)的人數(shù);
(Ⅲ)在這50名男生身高在172cm以上(含172cm)的人中任意抽取2人,該2人中身高排名(從高到低)在全市前130名的人數(shù)記為ξ,求ξ的數(shù)學期望.
參考數(shù)據(jù):
若ξ-N(μ+?2).則
P(μ-?<ξ≤μ+?)=0.6826,
P(μ-2?<ξ≤μ+2?))=0.9544,
P(μ-3?<ξ≤μ+3?)=0.9974.

查看答案和解析>>

同步練習冊答案