已知
|OA|
=2,
|OB|
=
3
,∠AOB=120°
點(diǎn)C在∠AOB內(nèi),且∠AOC=30°,設(shè)
OC
=m
OA
+n
OB
(m,n∈R)
,則
m
n
=( 。
A.
3
B.
3
3
C.
1
2
D.2

精英家教網(wǎng)
建立如圖所示的坐標(biāo)系,由已知數(shù)據(jù)可得B(
3
,0)
,A(-1,
3
),設(shè)C(0,y),
OC
=(0,y),
OA
=(-1,
3
),
OB
=(
3
,0),
由題意可得:(0,y)=m(-1,
3
)+n(
3
,0)=(-m+
3
n,
3
m)
故可得
0=-m+
3
n
y=
3
m
,可解得0=-m+
3
n,
即m=
3
n,故可得
m
n
=
3

故選A
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
OA
=(2,5)
,
OB
=(3,1)
OC
=(6,3)
,在
OC
上是否存在點(diǎn)M,使
MA
MB
,若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知|
OA
|=2
,|
OB
|=2
,
OA
OB
=0
,點(diǎn)C在線段AB上,且∠AOC=60°,則
AB
OC
的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△OAB中,已知|O
A
| =2,|O
B
| =2
3
,∠AOB=90°,單位圓O與OA交于C,A
D
B
,λ∈(0,1)
,P為單位圓O上的動(dòng)點(diǎn).
(1)若O
C
+O
P
=O
D
,求λ的值;
(2)記|P
D
|
的最小值為f(λ),求f(λ)的表達(dá)式及f(λ)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知|
OA
|=2,|
OB
|=
3
,∠AOB=150°,點(diǎn)C在∠AOB內(nèi),且∠AOC=30°,設(shè)
OC
=m
OA
+n
OB
(m,n∈R),則
m
n
=( 。
A、
3
2
B、
3
C、
2
3
3
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△OAB中,已知|
OA
|=2,|
OB
|=2
3
,∠AOB=90°
,單位圓O與OA交于C,
AD
AB
,λ∈(0,1)
,P為單位圓O上的動(dòng)點(diǎn).
(1)若
OD
=
3
4
OA
+
1
4
OB
,求λ的值;
(2)若
OC
+
OP
=
OD
,求
OC
OP
的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案