【題目】為了比較注射兩種藥物后產(chǎn)生的皮膚皰疹的面積,選200只家兔做試驗(yàn),將這200只家兔隨機(jī)地分成兩組,毎組100只,其中一組注射藥物,另一組注射藥物.
(1)甲、乙是200只家兔中的2只,求甲、乙分在不同組的概率;
(2)下表1和表2分別是注射藥物和后的試驗(yàn)結(jié)果.(皰疹面積單位: )
表1:注射藥物后皮膚皰疹面積的頻數(shù)分布表
表2:注射藥物后皮膚皰疹面積的頻數(shù)分布表
(ⅰ)完成下面頻率分布直方圖,并比較注射兩種藥物后皰疹面積的中位數(shù)大;
(ⅱ)完成下面列聯(lián)表,并回答能否有的把握認(rèn)為“注射藥物后的皰疹面積與注射藥物后的皰疹面積有差異”.
表3:
附:
【答案】(1) ;(2)(i)答案見解析;(2)答案見解析.
【解析】試題分析:(1)利用組合數(shù)找出所有事件的個(gè)數(shù)n,基本事件的個(gè)數(shù)m,代入古典概率計(jì)算公式p=;(2)(ⅰ)由頻數(shù)分布表中的頻數(shù)求出每組的,畫出頻率分布直方圖,可以看出注射藥物A后的皰疹面積的中位數(shù)在65至70之間,而注射藥物B后的皰疹面積的中位數(shù)在70至75之間,所以注射藥物A后皰疹面積的中位數(shù)小于注射藥物B后皰疹面積的中位數(shù),(ⅱ)完成2×2列聯(lián)表,代入計(jì)算隨機(jī)變量值后與臨界點(diǎn)比較,判斷能否有的把握認(rèn)為“注射藥物后的皰疹面積與注射藥物后的皰疹面積有差異”.
試題解析:
(Ⅰ)甲、乙兩只家兔分在不同組的概率為
(Ⅱ)(i)
圖Ⅰ注射藥物A后皮膚皰疹面積的頻率分布直方圖 圖Ⅱ注射藥物B后皮膚皰疹面積的頻率分布直方圖
可以看出注射藥物A后的皰疹面積的中位數(shù)在65至70之間,而注射藥物B后的皰疹面積的中位數(shù)在70至75之間,所以注射藥物A后皰疹面積的中位數(shù)小于注射藥物B后皰疹面積的中位數(shù).
(ii)表3:
由于K2>10.828,所以有99.9%的把握認(rèn)為“注射藥物A后的皰疹面積于注射藥物B后的皰疹面積有差異”。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l:
1證明直線l經(jīng)過定點(diǎn)并求此點(diǎn)的坐標(biāo);
2若直線l不經(jīng)過第四象限,求k的取值范圍;
3若直線l交x軸負(fù)半軸于點(diǎn)A,交y軸正半軸于點(diǎn)B,O為坐標(biāo)原點(diǎn),設(shè)的面積為S,求S的最小值及此時(shí)直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐A﹣BCFE中,四邊形EFCB為梯形,EF∥BC,且EF= BC,△ABC是邊長為2的正三角形,頂點(diǎn)F在AC上的射影為點(diǎn)G,且FG= ,CF= ,BF= .
(1)證明:平面FGB⊥平面ABC;
(2)求二面角E﹣AB﹣F的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn) ,點(diǎn)P是圓 上的任意一點(diǎn),設(shè)Q為該圓的圓心,并且線段PA的垂直平分線與直線PQ交于點(diǎn)E.
(1)求點(diǎn)E的軌跡方程;
(2)已知M,N兩點(diǎn)的坐標(biāo)分別為(﹣2,0),(2,0),點(diǎn)T是直線x=4上的一個(gè)動點(diǎn),且直線TM,TN分別交(1)中點(diǎn)E的軌跡于C,D兩點(diǎn)(M,N,C,D四點(diǎn)互不相同),證明:直線CD恒過一定點(diǎn),并求出該定點(diǎn)坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知的頂點(diǎn),邊上的中線所在的直線方程為,邊上的高所在直線的方程為.
()求的頂點(diǎn)、的坐標(biāo).
()若圓經(jīng)過不同的三點(diǎn)、、,且斜率為的直線與圓相切于點(diǎn),求圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn),求
(1)過點(diǎn)A,B且周長最小的圓的方程;
(2)過點(diǎn)A,B且圓心在直線上的圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=x2﹣alnx﹣(a﹣2)x.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)f(x)有兩個(gè)零點(diǎn)x1 , x2(1)求滿足條件的最小正整數(shù)a的值;
(Ⅲ)求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)m, n是兩條不同的直線,是三個(gè)不同的平面, 給出下列四個(gè)命題:
①若m⊥α,n∥α,則m⊥n;; ②若α∥β, β∥r, m⊥α,則m⊥r;
③若m∥α,n∥α,則m∥n;; ④若α⊥r, β⊥r,則α∥β.
其中正確命題的序號是 ( )
A. ①和② B. ②和③ C. ③和④ D. ①和④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com