已知拋物線關(guān)于y軸對(duì)稱(chēng),它的頂點(diǎn)在坐標(biāo)原點(diǎn)O,并且經(jīng)過(guò)點(diǎn)M(x0,1),若點(diǎn)M到該拋物線的焦點(diǎn)距離為3,則|OM|=( 。
分析:根據(jù)點(diǎn)M(x0,1)到該拋物線焦點(diǎn)的距離為3,利用拋物線的定義,可求拋物線方程,進(jìn)而可得點(diǎn)M的坐標(biāo),由此可求|OM|.
解答:解:由題意,拋物線關(guān)于x軸對(duì)稱(chēng),開(kāi)口向右,設(shè)方程為x2=2py(p>0)
∵點(diǎn)M(x0,1)到該拋物線焦點(diǎn)的距離為3,
∴1+
p
2
=3
∴p=4,
∴拋物線方程為x2=8y,
∵M(jìn)(x0,1),∴x02=8
∴|OM|=
8+1
=3.
故選B.
點(diǎn)評(píng):本題考查拋物線的性質(zhì),考查拋物線的定義,解題的關(guān)鍵是利用拋物線的定義求出拋物線方程.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•青浦區(qū)二模)(理)已知A、B是拋物線y2=4x上的相異兩點(diǎn).
(1)設(shè)過(guò)點(diǎn)A且斜率為-1的直線l1,與過(guò)點(diǎn)B且斜率為1的直線l2相交于點(diǎn)P(4,4),求直線AB的斜率;
(2)問(wèn)題(1)的條件中出現(xiàn)了這樣的幾個(gè)要素:已知圓錐曲線Γ,過(guò)該圓錐曲線上的相異兩點(diǎn)A、B所作的兩條直線l1、l2相交于圓錐曲線Γ上一點(diǎn);結(jié)論是關(guān)于直線AB的斜率的值.請(qǐng)你對(duì)問(wèn)題(1)作適當(dāng)推廣,并給予解答;
(3)若線段AB(不平行于y軸)的垂直平分線與x軸相交于點(diǎn)Q(x0,0).若x0=5,試用線段AB中點(diǎn)的縱坐標(biāo)表示線段AB的長(zhǎng)度,并求出中點(diǎn)的縱坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•青浦區(qū)二模)(文)已知A、B是拋物線y2=4x上的相異兩點(diǎn).
(1)設(shè)過(guò)點(diǎn)A且斜率為-1的直線l1,與過(guò)點(diǎn)B且斜率為1的直線l2相交于點(diǎn)P(4,4),求直線AB的斜率;
(2)問(wèn)題(1)的條件中出現(xiàn)了這樣的幾個(gè)要素:已知圓錐曲線Γ,過(guò)該圓錐曲線上的相異兩點(diǎn)A、B所作的兩條直線l1、l2相交于圓錐曲線Γ上一點(diǎn);結(jié)論是關(guān)于直線AB的斜率的值.請(qǐng)你對(duì)問(wèn)題(1)作適當(dāng)推廣,并給予解答;
(3)若線段AB(不平行于y軸)的垂直平分線與x軸相交于點(diǎn)Q(x0,0).若x0>2,試用x0表示線段AB中點(diǎn)的橫坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知A、B是拋物線y2=4x上的相異兩點(diǎn).
(1)設(shè)過(guò)點(diǎn)A且斜率為-1的直線l1,與過(guò)點(diǎn)B且斜率為1的直線l2相交于點(diǎn)P(4,4),求直線AB的斜率;
(2)問(wèn)題(1)的條件中出現(xiàn)了這樣的幾個(gè)要素:已知圓錐曲線Γ,過(guò)該圓錐曲線上的相異兩點(diǎn)A、B所作的兩條直線l1、l2相交于圓錐曲線Γ上一點(diǎn);結(jié)論是關(guān)于直線AB的斜率的值.請(qǐng)你對(duì)問(wèn)題(1)作適當(dāng)推廣,并給予解答;
(3)若線段AB(不平行于y軸)的垂直平分線與x軸相交于點(diǎn)Q(x0,0).若x0>2,試用x0表示線段AB中點(diǎn)的橫坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009年上海市靜安、楊浦、青浦、寶山區(qū)高考數(shù)學(xué)二模試卷(文理合卷)(解析版) 題型:解答題

(文)已知A、B是拋物線y2=4x上的相異兩點(diǎn).
(1)設(shè)過(guò)點(diǎn)A且斜率為-1的直線l1,與過(guò)點(diǎn)B且斜率為1的直線l2相交于點(diǎn)P(4,4),求直線AB的斜率;
(2)問(wèn)題(1)的條件中出現(xiàn)了這樣的幾個(gè)要素:已知圓錐曲線Γ,過(guò)該圓錐曲線上的相異兩點(diǎn)A、B所作的兩條直線l1、l2相交于圓錐曲線Γ上一點(diǎn);結(jié)論是關(guān)于直線AB的斜率的值.請(qǐng)你對(duì)問(wèn)題(1)作適當(dāng)推廣,并給予解答;
(3)若線段AB(不平行于y軸)的垂直平分線與x軸相交于點(diǎn)Q(x,0).若x>2,試用x表示線段AB中點(diǎn)的橫坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009年上海市靜安、楊浦、青浦、寶山區(qū)高考數(shù)學(xué)二模試卷(文理合卷)(解析版) 題型:解答題

(理)已知A、B是拋物線y2=4x上的相異兩點(diǎn).
(1)設(shè)過(guò)點(diǎn)A且斜率為-1的直線l1,與過(guò)點(diǎn)B且斜率為1的直線l2相交于點(diǎn)P(4,4),求直線AB的斜率;
(2)問(wèn)題(1)的條件中出現(xiàn)了這樣的幾個(gè)要素:已知圓錐曲線Γ,過(guò)該圓錐曲線上的相異兩點(diǎn)A、B所作的兩條直線l1、l2相交于圓錐曲線Γ上一點(diǎn);結(jié)論是關(guān)于直線AB的斜率的值.請(qǐng)你對(duì)問(wèn)題(1)作適當(dāng)推廣,并給予解答;
(3)若線段AB(不平行于y軸)的垂直平分線與x軸相交于點(diǎn)Q(x,0).若x=5,試用線段AB中點(diǎn)的縱坐標(biāo)表示線段AB的長(zhǎng)度,并求出中點(diǎn)的縱坐標(biāo)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案