已知函數(shù)f(x)=x-
2x
+1-alnx
,a>0,
(1)討論f(x)的單調(diào)性;
(2)設(shè)a=3,求f(x)在區(qū)間[1,e2]上值域.期中e=2.71828…是自然對數(shù)的底數(shù).
分析:(I)求出函數(shù)的導(dǎo)數(shù),對參數(shù)的取值范圍進(jìn)行討論,即可確定函數(shù)的單調(diào)性.
(II)由(I)所涉及的單調(diào)性來求在區(qū)間[1,e2]上的單調(diào)性,確定出函數(shù)的最值,即可求出函數(shù)的值域.
解答:解:(I)∵函數(shù)f(x)=x-
2
x
+1-alnx
,a>0
∴f′(x)=1+
2
x2
-
a
x
,x>0
令t=
1
x
>0
y=2t2-at+1(t≠0)
①△=a2-8≤0,即:0<a≤2
2
,y≥0恒成立,此時(shí)函數(shù)f(x)在(0,+∞)上是增函數(shù)
②△=a2-8>0,即:a>2
2
,y=0有兩個(gè)不等根
由2t2-at+1>0,得t<
a-
a2-8
4
或t>
a+
a2-8
4
,又x>0
0<x<
a-
a2-8
2
或x<0或x>
a+
a2-8
2

由2t2-at+1<0,得
a-
a2-8
2
<t<
a+
a2-8
2

a-
a2-8
2
<x<
a+
a2-8
2

綜上:①0<a≤2
2
,函數(shù)f(x)在(0,+∞)上是增函數(shù)
②a>2
2
函數(shù)f(x)(0,
a-
a2-8
2
),(
a+
a2-8
2
,+∞)
上是增函數(shù),在(
a-
a2-8
2
a+
a2-8
2
)
上是減函數(shù),
(2)當(dāng)a=3時(shí),由(1)知f(x)在(1,2)上是減函數(shù),在(2,+∞)上是增函數(shù),
故函數(shù)在[1,2]是奇函數(shù),在[2,e2]上是增函數(shù)
又f(1)=0,f(2)=2-3ln2,f(e2)=e2-
2
e2
-5>0

∴f(x)在區(qū)間[1,e2]上值域是[2-3ln2,e2-
2
e2
-5
]
點(diǎn)評:本題主要考查函數(shù)的單調(diào)性及值域,比較復(fù)雜的函數(shù)的單調(diào)性,一般用導(dǎo)數(shù)來研究,將其轉(zhuǎn)化為函數(shù)方程不等式綜合問題解決,研究值域時(shí)一定要先確定函數(shù)的單調(diào)性才能求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x-2m2+m+3(m∈Z)為偶函數(shù),且f(3)<f(5).
(1)求m的值,并確定f(x)的解析式;
(2)若g(x)=loga[f(x)-ax](a>0且a≠1),是否存在實(shí)數(shù)a,使g(x)在區(qū)間[2,3]上的最大值為2,若存在,請求出a的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:浙江省東陽中學(xué)高三10月階段性考試數(shù)學(xué)理科試題 題型:022

已知函數(shù)f(x)的圖像在[a,b]上連續(xù)不斷,f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]),其中,min{f(x)|x∈D}表示函數(shù)f(x)在D上的最小值,max{f(x)|x∈D}表示函數(shù)f(x)在D上的最大值,若存在最小正整數(shù)k,使得f2(x)-f1(x)≤k(x-a)對任意的x∈[a,b]成立,則稱函數(shù)f(x)為[a,b]上的“k階收縮函數(shù)”.已知函數(shù)f(x)=x2,x∈[-1,4]為[-1,4]上的“k階收縮函數(shù)”,則k的值是_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年河南省許昌市長葛三高高三第七次考試數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

已知函數(shù)f(x)、g(x),下列說法正確的是( )
A.f(x)是奇函數(shù),g(x)是奇函數(shù),則f(x)+g(x)是奇函數(shù)
B.f(x)是偶函數(shù),g(x)是偶函數(shù),則f(x)+g(x)是偶函數(shù)
C.f(x)是奇函數(shù),g(x)是偶函數(shù),則f(x)+g(x)一定是奇函數(shù)或偶函數(shù)
D.f(x)是奇函數(shù),g(x)是偶函數(shù),則f(x)+g(x)可以是奇函數(shù)或偶函數(shù)

查看答案和解析>>

同步練習(xí)冊答案